
THE ULTIMATE GUIDE TO
REACT NATIVE OPTIMIZATION
2024 Edition

2

﻿ The Ultimate Guide to React Native Optimization

TABLE OF CONTENTS

How This Guide Is Organized	 3
Introduction to React Native Optimization	 6
It’s all about TTI and FPS?	 7

PART 1

Pay attention to UI re-renders	 12
Use dedicated components for certain layouts	 35
Think twice before you pick an external library	 45
Always remember to use libraries dedicated to
the mobile platform	 51
Find the balance between native and JavaScript	 57
Animate at 60FPS – no matter what	 64
Replace Lottie with Rive	 82
Draw efficiently on a canvas with skia	 90
Optimize your app’s JavaScript bundle	 102

PART 2

Always run the latest React Native version to access
the new features	 109
How to debug faster and better with Flipper	 125
Avoid unused native dependencies	 131
Optimize your application startup time with Hermes	 138
Optimize your Android application’s size with
these Gradle settings	 146
Experiment with the New Architecture of React Native	 153

PART 3

Run tests for key pieces of your app	 165
Have a working Continuous Integration (CI) in place	 175
Don’t be afraid to ship fast with Continuous Deployment	 186
Ship OTA (Over-The-Air) when in an emergency	 199
Make your app consistently fast	 208
Know how to profile iOS	 221
Know how to profile Android	 230

Thank you	 240
About Callstack	 246

The Ultimate Guide to React Native Optimization

This guide is a comprehensive source of tactics, tricks, tips, tools,
and best practices to help you deliver an optimized React Native
app that delights your users.

We not only focus on the technological aspects of React Native
optimization; we also underline the impact of each technological
aspect on business continuity.

This guide contains best practices for optimizing:
•	 Stability
•	 Performance
•	 Resource usage
•	 User experience
•	 Maintenance costs
•	 Time-to-market

All these aforementioned aspects have a particular impact on
the revenue-generating effectiveness of your apps. Each ele-
ment – stability, performance, and resource usage – are directly
related to improving user engagement with (and therefore the
ROI) of your products because of their positive impact on the user
experience.

With a faster time-to-market, you can stay ahead of your compet-
itors, and a streamlined maintenance process will help you reduce
your spending on that particular process.

HOW THIS GUIDE IS ORGANIZED
Optimizing the React Native app is a complex process where you
need to take various aspects into account – from implementation
through using the latest React Native features to testing and con-
tinuous deployment.

4

The Ultimate Guide to React Native OptimizationHow This Guide Is Organized

WHAT THIS GUIDE LOOKS LIKE
AND THE TOPICS IT COVERS
THIS GUIDE IS DIVIDED INTO THREE PARTS:

The first part is about improving performance through under-
standing the React Native implementation details and knowing
how to maximize them. This part covers the following topics:

1.	 Pay attention to UI re-renders
2.	 Use dedicated components for certain layouts
3.	 Think twice before you pick an external library
4.	 Always remember to use libraries dedicated to the mobile

platform
5.	 Find the balance between native and JavaScript
6.	 Animate at 60FPS – no matter what
7.	 Replace Lottie with Rive
8.	 Optimize your app’s JavaScript bundle

The second part is about improving performance by using the lat-
est React Native features or turning some of them on. This part
describes the following topics:

Always run the latest React Native version to access the latest
features

1.	 How to debug faster and better with Flipper
2.	 Avoid unused native dependencies
3.	 Optimize your Android application startup time with Hermes
4.	 Optimize your Android application’s size with Gradle settings
5.	 Experiment with the New Architecture of React Native

5

The Ultimate Guide to React Native OptimizationHow This Guide Is Organized

The third part is about enhancing the stability of the application
by investing in testing and continuous deployment. This part tack-
les the following topics:

1.	 Run tests for key pieces of your app
2.	 Have a working Continuous Integration (CI) in place
3.	 Don’t be afraid to ship fast with Continuous Deployment
4.	 Ship OTA (Over-the-Air) in an emergency
5.	 Make your app consistently fast
6.	 Know how to profile iOS
7.	 Know how to profile Android

THE STRUCTURE OF EACH SECTION LOOKS LIKE THIS:

Issue

This part describes the main problem with React Native performance.

Solution

This part outlines how that problem may affect your business and
what the best practices are to solve it.

Benefits

This part focuses on the business benefits of our proposed
solution.

The Ultimate Guide to React Native Optimization

INTRODUCTION TO REACT
NATIVE OPTIMIZATION

The Ultimate Guide to React Native Optimization

The former is a measure of how quickly a user can start using (or
interacting with) your app. TTI is about boot-time performance.
Opening a new app should be fast, period. The latter is a measure
of how snappy your app’s interface is to the user interactions. FPS
is about runtime performance. Using the app should be as smooth
as riding a bike. Maybe unless you turn on that energy saver fea-
ture. The best apps out there, combine great boot-time and run-
time performance to provide the best end-to-end experience for
the users.

Almost every piece of advice you’ll find in this guide will be about
directly or indirectly impacting one of these metrics. And since
React Native gives us the tools to build native Android and iOS
apps sprinkled with some JavaScript on top, there will be lots of
opportunities to impact these metrics from many different angles!

Thankfully, most of the heavy-lifting is done for us on the frame-
work level so any React Native developer can start with a good
baseline performance today. However the more complex your app
gets, the more challenging it may be to keep a good baseline of
healthy TTI and FPS metrics.

IT’S ALL ABOUT TTI AND FPS?
Wait a minute, what are these weird acronyms even?! When
thinking about optimizing a mobile React Native app, we need
to acknowledge the two most important metrics—apart from
the value proposition and engagement—that our users will base
their feeling of how fast and snappy our app is, are the Time To
Interactive (TTI) and Frames Per Second (FPS).

The Ultimate Guide to React Native Optimization

And frankly, it’s not all about these two metrics. After all, if your
app crashes at runtime, can you measure FPS for the interaction
you go after? Optimization is a complex and ongoing process that
needs to happen continuously and on many different grounds for
every successful product. As you progress through this guide,
you’ll gain a better grasp on what affects your users’ experience,
what matters for delivering and perceiving a better performance,
why it matters, and how to solve the challenges that prevent your
beloved users from enjoying the best experience when using your
React Native app.

9

It’s all about TTI and FPS? The Ultimate Guide to React Native Optimization

EVERY DECLARATIVE APPROACH (INCLUDING REACT NATIVE) IS
BUILT UPON IMPERATIVE APIS, WHICH REQUIRES GREAT CARE.

When you’re building your application the imperative way, you
carefully analyze every callsite to the external APIs. For example,
when working in a multi-threaded environment, you safely write
your code in a thread, being aware of the context and resources
that the code is looking for.

Despite all the differences between the declarative and imperative
ways of doing things, they have a lot in common. Every declara-
tive abstraction can be broken down into a number of imperative
calls. For example, React Native uses the same APIs to render your
application on iOS as native developers would use themselves.

REACT NATIVE TAKES CARE
OF THE RENDERING. BUT
PERFORMANCE IS STILL KEY.
With React Native, you create components that describe how
your interface should look like. During the runtime, React Native
turns them into platform-specific native components. Rather
than talking directly to the underlying APIs, you focus on the user
experience of your application.

However, that doesn’t mean all the applications developed with
React Native are equally fast and offer the same level of user
experience.

10

It’s all about TTI and FPS? The Ultimate Guide to React Native Optimization

REACT NATIVE UNIFIES PERFORMANCE, BUT IT ISN’T A GUARANTEE!

While you don’t have to worry about the performance of the un-
derlying iOS and Android APIs calls, how you compose the com-
ponents can make all the difference. All your components will offer
the same level of performance and responsiveness.

BUT IS “SAME” A SYNONYM FOR “BEST”? IT’S NOT.

That’s when our checklist comes into play. Use React Native to
its full potential. As discussed before, React Native is a declar-
ative framework and takes care of rendering the application for
you. In other words, you don’t dictate how the application will be
rendered.

Your job is to define the UI components and forget about the rest.
However, that doesn’t mean that you should take the perfor-
mance of your application for granted. In order to create fast and
responsive applications, you have to think the React Native way.
You have to understand how the framework interacts with the un-
derlying platform APIs.

IF YOU NEED HELP WITH
PERFORMANCE, STABILITY, USER
EXPERIENCE, OR OTHER COMPLEX
ISSUES – CONTACT US!
As React Native Core Contributors and leaders of the com-
munity, we will be happy to help.

https://www.callstack.com/contact-us?utm_campaign=RN_Performance&utm_source=guide&utm_content=guide_contact_1

The Ultimate Guide to React Native Optimization

IMPROVE PERFORMANCE BY
UNDERSTANDING THE IMPLEMENTATION
DETAILS OF REACT NATIVE.
In this section, we will dive deeper into the most popular perfor-
mance bottlenecks and the React Native implementation details
that contribute to them. This will not only be a smooth introduc-
tion to some of the advanced React Native concepts, but it will
also let you improve the stability and performance of your appli-
cation by performing small tweaks and changes.

The following part is focused on the first point from the check-
list of performance optimization tactics: UI re-renders. It’s a very
important part of the React Native optimization process be-
cause it allows for the reduction of the device’s battery usage
which translates into a better user experience for your app.

PART 1

The Ultimate Guide to React Native Optimization

PAY ATTENTION TO
UI RE-RENDERS

PART 1 | CHAPTER 1

13

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

ISSUE: INCORRECT STATE UPDATES CAUSE EXTRANEOUS
RENDERING CYCLES OR THE DEVICE IS JUST TOO SLOW.

As discussed briefly, React Native takes care of rendering the ap-
plication for you. You have to define all the components you need
and compose the final interface out of these smaller building
blocks. In that approach, you don’t control the application ren-
dering lifecycle.

In other words, when and how to repaint things on screen is purely
React Native’s responsibility. React looks out for the changes you
have done to your components, compares them, and, by design,
only performs the required and smallest number of actual updates.

OPTIMIZE THE NUMBER OF STATE
OPERATIONS AND REMEMBER
ABOUT MEMOIZED COMPONENTS
TO MAKE YOUR APP WORK FASTER
WITH FEWER RESOURCES.

14

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

By default, a component can re-render if its parent is re-ren-
dering or the props are different. This means that your compo-
nent’s render method can sometimes run, even if their props didn’t
change. This is an acceptable tradeoff in most scenarios, as com-
paring the two objects (the previous and current props) would
take longer.

NEGATIVE IMPACT ON PERFORMANCE, UI FLICKER, AND FPS DECREASE

While the above heuristics are correct most of the time, perform-
ing too many operations can cause performance problems, espe-
cially on low-end mobile devices.

As a result, you may observe your UI flickering (when the updates
are performed) or frames dropping (while there’s an animation
happening and an update is coming along).

Note: Performing premature optimizations may have
the opposite of the intended effect. Try looking at
performance issues as soon as you spot dropped
frames or undesired performance within your app.

As soon as you see any of these symptoms, it is the right time to
look a bit deeper into your application lifecycle and look for extra-
neous operations that you would not expect to happen.

HOW DO WE KNOW WHAT TO OPTIMIZE?

When it comes to performance optimization, we want to make
decisions based on data. The data comes from measuring perfor-
mance using specialized tools. The process is often referred to as
profiling. There are many tools available that can help us with pro-
filing our React Native apps: react-devtools, why-did-you-render,
Profiler, and others.

For this exercise, we’ll use Flipper, a platform for debugging iOS,
Android, and React Native apps. It has React DevTools Profiler in-
tegrated as a plugin that can produce a flame graph of the React
rendering pipeline as a result of profiling. We can leverage this

https://www.npmjs.com/package/react-devtools
https://reactjs.org/docs/profiler.html
https://reactjs.org/docs/profiler.html
https://fbflipper.com/

15

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

data to measure the re-rendering issues of the app. Once you’ve
downloaded Flipper, select React DevTools:’'

Here is the code we’re about to profile:

import React, { useEffect, useState } from 'react';
import { View } from 'react-native';

const App = () => {
 const [value, setValue] = useState('');
 const backgroundStyle = {
 backgroundColor: '#fff',
 flex: 1,
 marginTop: 80,
 };

 useEffect(() => {
 setTimeout(() => {
 setValue('update 1');
 }, 3000);
 setTimeout(() => {
 setValue('update 2');
 }, 5000);
 }, []);

 return (
 <View style={backgroundStyle}>
 <ColoredView />
 </View>
);
};
const ColoredView = () => {
 const style = { backgroundColor: 'red, padding: 10 };
 return <View style={style} />;
};

export default App;

16

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

In the Flipper app, make sure the ''Record why each component
rendered while profiling'' option is enabled in the settings icon and
hit the round blue button to start profiling. After around 5 sec-
onds, hit the round red button to stop profiling. Your profile will
look something like this:

This profile shows us how much time a certain component took to
render, how many times it re-rendered, and what was the cause
of it. In our case, ColoredView rendered 2 times due to the par-
ent component being re-rendered. This might give us a hint
that there’s an unexpected performance implication of the code
associated with ColoredView . Using this knowledge, we can
apply tailored solutions to avoid the extra re-renders.

Taking a look at the performance flame graph for the first time
may be slightly intimidating. To understand React DevTools more
in-depth, this video from Ben Awad is good at explaining it. Don’t
forget to watch this talk by Alex at React Native EU, which ex-
plains how we can use flame graph to identify and fix the issues.
Also, visit the official react website for detailed information on
React Profiler.

SOLUTION: OPTIMIZE THE NUMBER OF STATE OPERATIONS AND
REMEMBER TO USE MEMOIZED COMPONENTS WHEN NEEDED.

There’re a lot of ways your application can turn into unnecessary
rendering cycles and that point itself is worth a separate article.
Here, we will focus on two common scenarios – using a controlled
component, such as TextInput and global state.

https://youtu.be/00RoZflFE34
https://www.react-native.eu/talks/alexandre-moureaux-performance-issues-the-usual-suspects
https://reactjs.org/blog/2018/09/10/introducing-the-react-profiler.html

17

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

CONTROLLED VS UNCONTROLLED COMPONENTS

Let’s start with the first one. Almost every React Native application
contains at least one TextInput that is controlled by the compo-
nent state as per the following snippet:

Read more: https://snack.expo.dev/@callstack-snack/textinput-example

The above code sample will work in most cases. However, on slow
devices, and in situations where the user is typing really fast, it
may cause a problem with the view updates.

This problem is caused by React Native’s asynchronous nature.
To better understand what is going on here, let’s first take a look
at the order of standard operations that occur while the user is
typing and populating your <TextInput /> with new characters.

import React, { useState } from 'react';
import { TextInput, StyleSheet } from 'react-native';

const UselessTextInput = () => {
 const [value, setValue] = useState('Text');

 const onChangeText = (text) => {
 setValue(text);
 };

 return (
 <TextInput
 accessibilityLabel=''Text input field''
 style={styles.textInput}
 onChangeText={onChangeText}
 value={value}
 />
);
};

const styles = StyleSheet.create({
 textInput: {
 height: 40,
 borderColor: 'gray’,
 borderWidth: 1,
 },
});

export default UselessTextInput;

https://snack.expo.dev/@callstack-snack/textinput-example

18

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

Diagram that shows what happens while typing TEST

As soon as the user starts inputting a new character into the na-
tive input, an update is sent to React Native via the onChangeText
prop (operation 1 on the above diagram). React processes that in-
formation and updates its state accordingly by calling setState .
Next, a controlled component synchronizes its JavaScript val-
ue with the native component value (operation 2 on the above
diagram).

There are benefits to such an approach. React is a source of truth
that dictates the value of your inputs. This technique lets you al-
ter the user input as it happens, by e.g. performing a validation,
masking it, or completely modifying it.

Unfortunately, the aforementioned approach, while ultimately
cleaner and more compliant with the way React works, has one
downside and it is most noticeable when there are limited resourc-
es available and/ or the user is typing at a very high rate.

Diagram that shows what happens while typing TEST too fast

19

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

When the updates via onChangeText arrive before React Native
synchronized each of them back, the interface will start flickering.
The first update (operation 1 and operation 2) performs without
issues as the user starts typing T.

Next, operation 3 arrives, followed by operation 4. The user typed
E & S while React Native was busy doing something else, delay-
ing the synchronization of the letter E (operation 5). As a result,
the native input will temporarily change its value back from TES
to TE.

Now, the user was typing fast enough to actually enter anoth-
er character when the value of the text input was set to TE for
a second. As a result, another update arrived (operation 6), with
the value of TET. This wasn’t intentional – the user wasn’t expect-
ing the value of its input to change from TES to TE.

Finally, operation 7 synchronized the input back to the correct in-
put received from the user a few characters before (operation 4
informed us about TES). Unfortunately, it was quickly overwritten
by another update (operation 8), which synchronized the value to
TET – the final value of the input.

The root cause of this situation lies in the order of operations. If
operation 5 was executed before operation 4, things would have
run smoothly. Also, if the user didn’t type T when the value was
TE instead of TES, the interface would flicker but the input value
would remain correct.

One of the solutions for the synchronization problem is to remove
the value prop from TextInput entirely. As a result, the data will
flow only one way, from the native to the JavaScript side, elimi-
nating the synchronization issues that were described earlier.

20

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

Read more: https://snack.expo.dev/@callstack-snack/handling-text-input

However, as pointed out by @nparashuram in his YouTube vid-
eo (which is a great resource to learn more about React Native
performance), that workaround alone isn’t enough in some cases.
For example, when performing an input validation or masking, you
still need to control the data that the user is typing and alter what
ends up being displayed within TextInput.

import React, { useState } from 'react';
import { Text, TextInput, View, StyleSheet } from 'react-
native';

const PizzaTranslator = () => {
 const [value, setValue] = useState('');

 const onChangeText = (text) => {
 setValue(text);
 };

 return (
 <View style={styles.container}>
 <TextInput
 accessibilityLabel=''Text input field''
 placeholder=''Type here to translate!''
 onChangeText={onChangeText}
 defaultValue={value}
 style={styles.textInput}
 />
 <Text style={styles.label}>
 {value
 .split(' ')
 .map((word) => word && '🍕’)
 .join(' ')}
 </Text>
 </View>
);
};

export default PizzaTranslator;

const styles = StyleSheet.create({
 container: {
 padding: 10,
 },
 textInput: {
 height: 40,
 },
 label: {
 padding: 10,
 fontSize: 42,
 },
});

https://snack.expo.dev/@callstack-snack/handling-text-input
https://twitter.com/nparashuram
https://youtu.be/83ffAY-CmL4?t=1483

21

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

GLOBAL STATE

Another common reason for performance issues is how com-
ponents are dependent on the application’s global state. The
worst case scenario is when the state change of a single con-
trol like TextInput or CheckBox propagates the render of
the whole application. The reason for this is a bad global state
management design.

First, your state management library should take care of updating
components only when a defined subset of data has changed – here
comes the useSelector hooks (use them in favor of connect
function, as they are simpler to use)

Second, if your component uses data in a different shape than
what is stored in your state, it may re-render, even if there is
no real data change. To avoid this situation, you can implement
a selector that would memorize the result of the derivation until
the set of passed dependencies changes. In Redux Toolkit you
have createSelector which is meant for creating memoized
selectors.

import { createSelector } from ''@reduxjs/toolkit'';

const selectVisibilityFilter = (state) => state.
visibilityFilter;
const selectAllTodos = (state) => state.todos;
const selectVisibleTodos = createSelector(
 [selectVisibilityFilter, selectAllTodos],
 (filter, todos) => {
 switch (filter) {
 case ''SHOW_COMPLETED'':
 return todos.filter((t) => t.completed);
 case ''SHOW_UNCOMPLETED'':
 return todos.filter((t) => !t.completed);
 default:
 return todos;
 }
 },
);

22

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

A typical example of memoized selectors with Redux Tookit

A common bad performance practice is the belief that a state man-
agement library can be replaced by using a custom implementa-
tion based on React Context . It may be handy at the beginning
because it reduces the boilerplate code that state management
libraries introduce. But using it without proper memoization will
lead to huge performance drawbacks. You will probably end up
refactoring state management to Redux , because it will turn out
that it is easier than the implementation of custom selectors to
your current solution.

You can also optimize your application on a single component lev-
el. Using React.memo or React.useMemo will likely save you
a lot of re-renders – the React Profiler can tell you precisely how
many. Try not to implement these techniques in advance, because
it may be premature optimization. In rare cases, memoization can
lead to the app being less performant due to increased memory
usage. Which is impossible to measure with JS tooling. Always
make sure to profile the ''before'' and ''after'' of your changes to
have certainty it makes the app faster.

STATE NORMALIZATION (REDUX TOOLKIT):

In app development, it is common to work with entities, which are
collections of data where each unique record has a unique ID value

const TodoList = () => {
 const todos = useSelector(selectVisibleTodos);

 return (
 <FlatList
 data={todos}
 renderItem={({ item }) => (
 <TodoItem name={item.name} completed={item.completed}
/>
)}
 keyExtractor={(item) => item.id}
 />
);
};

23

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

in a specific field, such as User, Post, Todo, Comment. State nor-
malization is a recommended approach to managing entities in
a standardized and organized manner in a Redux store. It signifi-
cantly helps with CRUD (create, read, update, delete) operations,
while maintaining high performance. It involves treating a por-
tion of the store as if it were a database and keeping that data in
a normalized form.

Imagine you have a stack of important documents on your desk.
If you take the time to sort them, put them into binders, tag each
binder with an ID, and prepare the list of IDs in order how you put
the binders on the shelf, you will be able to find the document you
need much more quickly in the future. This is much more efficient
than digging through an unorganized stack every time you need
to find something but requires some time for preparation.

Similarly we can organize an array of blog posts – we need to
transform the array into a mapped record of entities addressed by
their IDs (the binders with IDs) and an array of IDs which is used
to indicate ordering (list of binders on the shelf).

const blogPosts = [
 {
 id: ''post1'',
 author: { username: ''user1'', name: ''User 1'' },
 body: ''......'',
 comments: [
 {
 id: ''comment1'',
 author: { username: ''user2'', name: ''User 2'' },
 comment: ''.....'',
 },
 {
 id: ''comment2'',
 author: { username: ''user3'', name: ''User 3'' },
 comment: ''.....'',
 },
],
 },
 {
 id: ''post2'',
 author: { username: ''user2'', name: ''User 2'' },

24

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

We could structurize above entities in following structure:

 body: ''......'',
 comments: [
 {
 id: ''comment3'',
 author: { username: ''user3'', name: ''User 3'' },
 comment: ''.....'',
 },
 {
 id: ''comment4'',
 author: { username: ''user1'', name: ''User 1'' },
 comment: ''.....'',
 },
 {
 id: ''comment5'',
 author: { username: ''user3'', name: ''User 3'' },
 comment: ''.....'',
 },
],
 },
 // and repeat many times
];

const blogPosts = {
 posts: {
 byId: {
 post1: {
 id: ''post1'',
 author: ''user1'',
 body: ''......'',
 comments: [''comment1'', ''comment2''],
 },
 post2: {
 id: ''post2'',
 author: ''user2'',
 body: ''......'',
 comments: [''comment3'', ''comment4'', ''comment5''],
 },
 },
 allIds: [''post1'', ''post2''],
 },

25

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

 comments: {
 byId: {
 comment1: {
 id: ''comment1'',
 author: ''user2'',
 comment: ''.....'',
 },
 comment2: {
 id: ''comment2'',
 author: ''user3'',
 comment: ''.....'',
 },
 comment3: {
 id: ''comment3'',
 author: ''user3'',
 comment: ''.....'',
 },
 comment4: {
 id: ''comment4'',
 author: ''user1'',
 comment: ''.....'',
 },
 comment5: {
 id: ''comment5'',
 author: ''user3'',
 comment: ''.....'',
 },
 },
 allIds: [''comment1'', ''comment2'', ''comment3'',
''comment4'', ''comment5''],
 },
 users: {
 byId: {
 user1: {
 username: ''user1'',
 name: ''User 1'',
 },
 user2: {
 username: ''user2'',
 name: ''User 2'',
 },
 user3: {
 username: ''user3'',
 name: ''User 3'',

26

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

Thanks to immediate access to each individual entity by its ID, we
have a fast method of managing big amounts of data. Not only
selecting is fast, but also adding, upserting, updating and deleting.

In the Redux Toolkit we have a createEntityAdapter method
which handles this mechanism automatically and returns a dedi-
cated set of tools: CRUD functions, selectors and sorting helpers.

 },
 },
 allIds: [''user1'', ''user2'', ''user3''],
 },
};

import {
 createEntityAdapter,
 createSlice,
 PayloadAction,
 nanoid,
} from ''@reduxjs/toolkit'';
import { RootState } from ''../../store'';

export interface Todo {
 id: string;
 name: string;
 completed: boolean;
}

const todoEntity = createEntityAdapter<Todo>();

export const todoSlice = createSlice({
 name: ''todo'',
 initialState: todoEntity.getInitialState(),
 reducers: {
 addTodo(state, { payload: { name } }: PayloadAction<{
name: string }>) {
 todoEntity.addOne(state, {
 name,
 id: nanoid(),
 completed: false,
 });
 },
 removeTodo(state, { payload }: PayloadAction<string>) {
 todoEntity.removeOne(state, payload);
 },
 updateValue(state, action: PayloadAction<Todo>) {
 todoEntity.upsertOne(state, action);
 },
 updateBy(state, { payload: { id } }: PayloadAction<{ id:
string }>) {
 const previousValue = state.entities[id]?.completed;

27

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

The primary content of an entity adapter is a set of generated re-
ducer functions for adding, updating, and removing entity instanc-
es from an entity state object:

The entity adapter contains a getSelectors() function that re-
turns a set of selectors that know how to read the contents of an
entity state object:

 if (typeof previousValue === ''boolean'') {
 todoEntity.updateOne(state, {
 id,
 changes: { completed: !previousValue },
 });
 }
 },
 },
});

export const todoActions = todoSlice.actions;

export type TodoSlice = {
 [todoSlice.name]: ReturnType<(typeof todoSlice)[''reduc-
er'']>;
};

const globalizedTodoSelector = (state: RootState) => state[to-
doSlice.name];

const entitySelectors = todoEntity.getSelectors<Root-
State>((state) =>
 globalizedTodoSelector(state),
);

export const todoSelectors = {
 ...entitySelectors,
};

const todoEntity = createEntityAdapter<Todo>()

const entitySelectors = todoEntity.
getSelectors<RootState>((state) =>
state[todoSlice.name])

28

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

ATOMIC STATE

The pattern of a single store – a top-down mental model – as ini-
tially promoted by Redux is moving towards a more atomic design.

Why is it moving away from a single store?
•	 It’s often overkill for some apps.
•	 It’s too verbose.
•	 You end up using memoization techniques to avoid re-renders.
•	 Top-down is straightforward but leads to poor performance.
•	 More states are needed when the app grows, and each has its

own problems and sub-states, such as handling local UI states
(loadings, errors, messages, etc).

If you don’t pay attention to the Redux store, it tends to absorb
all the states, leading to a monolithic structure that’s quite hard
to reason with. The top-down build places most of the states at
the top of the component; because of this, a state update from
a parent component could produce re-renders to its children.
Ideally, if possible, the state should be local to the component so
it can be reused – this means building from the bottom-up.

To start thinking about this bottom-up pattern, we want to build
from the smaller components, often called atoms. We don’t build
the component starting from the parent (or ''root'' container ele-
ment), we need to look at all the elements that make up the com-
ponent. We then have to start from the atom and add the right
state action, if needed.

Let’s say we have a TODO list with some filters: ''show all'', ''just
the active ones'', or ''just the completed ones''. We identify the top
component, the TodoList , but we don’t start here. We first iden-
tify the children and start building those smaller components, so
that later we can mix them and build a complex element. We need
to make some data visible in one component which will be man-
aged by another one. To avoid a parent state and passing down
the data and actions (top-down), we are going to use a state
manager. This state manager will be in charge of storing the data,
making it accessible, and providing actions/modifiers, because we

29

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

are moving to a bottom-up approach. We are going to use some
libraries that will help us.

Zustand

Zustand is often used as a top-down pattern but given the sim-
plicity and unopinionated library, we can use it to build a compo-
nent bottom-up.

Store

We create the obj where the filter will be and the modifiers will
be exposed:

Show all filter button

Here we update the ticket and this item so any children won’t suf-
fer a re-render:

export const useHomeStore = create((set) => ({
 filter: filterType.all,
 showAll: () => set({ filter: filterType.all }),
 showOnlyCompleted: () => set({ filter: filterType.completed
}),
 showOnlyActive: () => set({ filter: filterType.active }),
}));

const ShowAllItem = () => {
 const showAll = useHomeStore((state) => state.showAll);
 return <Menu.Item onPress={showAll} title=''Show All'' />;
};

https://github.com/pmndrs/zustand

30

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

Todo item

Here because we are looking at a filter, TodoItemList will only
re-render when it changes.

Jotai

Jotai was built with this bottom-up approach in mind, so its syntax
is minimal and simple. Using the concept of atom as a ''store'' then
you use different hooks to make the atom readonly or mutable.

Store

We use useAtomValue to read the filter value and useSetAtom
to set a new value. This is especially useful when performance is
a concern.

FilterMenuItem

export const TodoItemList = ({ item }) => {
 const filter = useHomeStore((state) => state.filter);
 if (!shouldBeShown(filter, item.done)) {
 return null;
 }

 return (
 <View>
 <Text>{item.title}</Text>
 <Text>{item.description}</Text>
 </View>
);
};

const filter = atom(filterType.all);

export const useCurrentFilter = () => useAtomValue(filter);
export const useUpdateFilter = () => useSetAtom(filter);

const FilterMenuItem = ({ title, filterType }) => {
 const setUpdateFilter = useUpdateFilter();
 const handleShowAll = () => setUpdateFilter(filterType);

 return <Menu.Item onPress={handleShowAll} title={title} />;
};

31

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

TodoItem

Using this bottom-up approach, we can prevent state changes on
the parent component, and produce re-renders to its children. In
addition, it often leads to less overuse of memoization.

FUTURE WITH REACT FORGET

Manual memory management is not fun to most of the builders
out there – whether it’s about deallocating memory with C or man-
ually memoizing components and values with React. We usually
dive into languages or use smart compilers to handle that for us.

React Forget is an ''auto-memoizing compiler'' for React which prom-
ises to enhance component re-rendering and might even eliminate
the need for using memo() , useCallback() and useMemo()
altogether. The compiler memoizes not only the calculation
of useMemo() results but also the resulting React element ob-
jects returned by the component.

The name React Forget comes from the principle with which this
tool is supposed to work. The component level optimisations and
memoization will be taken care of by the compiler, so you can
''forget'' about all the overhead and extra boilerplate that came
with doing this by hand.

export const TodoItemList = ({ item }) => {
 const filter = useCurrentFilter();

 if (!shouldBeShown(filter, item.done)) {
 return null;
 }

 return (
 <View>
 <Text>{item.title}</Text>
 <Text>{item.description}</Text>
 </View>
);
};

32

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

Note: It’s worth mentioning that as of the time of writing
this chapter, React Forget is still under development and
has not been released yet to the wider public. There’s
a great video from React Conf 2021, where @Huxpro describes
how React Forget will work underneath the hood. And in
2023, we received an update from Joe Savona and Mofei
Zhang from Meta at React Advanced 2023 on the state of
development and experimentation at instagram.com website.

Let’s take a look at the example code for todo list application from
the previous chapter about atomic state and see how it can be
simplified with the future Forget compiler.

We have a TodoListItem , which we would like to use in
a TodoList component. In order for not having multiple unnec-
essary rerenders when adding todos, changing the visibility or them-
eSettings we would need to wrap it with React.memo. We need
to also remember about all the functions inside the component
which will be recreated with every render such as handleChange .
There are a lot of things there to memoize and remember about
handling manually. That can quickly get really annoying.

const MemoizedTodo = React.memo(TodoListItem);

const TodoList = ({ visibility, themeSettings }) => {
 const [todos, setTodos] = useState(initialTodos);

 const handleChange = useCallback((todo) => {
 setTodos((todos) => getUpdated(todos, todo));
 }, []);

 const doneTodosNumber = useMemo(getDoneTodos(todos,
visibility),[]));

 return (
 <View>
 <FlatList data={todos} renderItem={MemoizedTodo} />
 <Text>Done: {doneTodosNumber}</Text>
 <TouchableOpacity onPress={handleChange}>
 <Text>Change</Text>
 </TouchableOpacity>
 </View>
);
};

https://www.youtube.com/watch?v=lGEMwh32soc
https://twitter.com/Huxpro
https://youtu.be/qOQClO3g8-Y

33

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

React Forget aims to resolve that issue forever. The promise is
that the code for the aforementioned example will look like follows:

and it will behave exactly the same as the previous example with
manual memoization.

There will be no need for using useCallback or memo and
the code will be optimized by the compiler. Very neat.

As authors of this book, we’re all excited for React Forget and
can’t wait when it ships. Hopefully we’ll be able to remove most of
the topics related to manual memory memoization management.

BENEFITS: FEWER RESOURCES NEEDED AND A FASTER APPLICATION.

You should always keep the performance of your app in the back
of your head. Beware of optimizing too fast. Some say that prema-
ture optimization is the root of all evil. They’re not entirely correct,
but also not entirely wrong. Premature memoization may lead to
more memory usage and provide only a fraction of improvement
compared to the effort taken. That’s why measuring and identi-
fying impactful problems to tackle is so important.

Most hard-to-solve performance issues are caused by bad archi-
tectural decisions around state management. Different libraries
juggle different sets of tradeoffs. Make sure you and your team

const TodoList = ({ visibility, themeSettings }) => {
 const [todos, setTodos] = useState(initialTodos);

 const handleChange = setTodos((todos) => getUpdated(todos,
todo));

 const doneTodosNumber = getDoneTodos(todos, visibility);
 return (
 <View>
 <FlatList data={todos} renderItem={TodoListItem} />
 <Text>Done: {doneTodosNumber}</Text>
 <TouchableOpacity onPress={handleChange}>
 <Text>Change</Text>
 </TouchableOpacity>
 </View>
);
};

34

Pay attention to UI re-renders The Ultimate Guide to React Native Optimization

understand them and pick the tool you’re most productive with.
For some, it may be the verbosity of Redux. But others may pre-
fer the ease of Zustand that avoids having to think about extra
re-renders.

With all these steps in mind, your application should perform few-
er operations and need smaller resources to complete its job. As
a result, this should lead to lower battery usage and more satis-
faction from interacting with the interface.

The Ultimate Guide to React Native Optimization

USE DEDICATED
COMPONENTS FOR
CERTAIN LAYOUTS

PART 1 | CHAPTER 2

36

Use dedicated components for certain layouts The Ultimate Guide to React Native Optimization

ISSUE: YOU ARE UNAWARE OF THE HIGHER-ORDER
COMPONENTS THAT ARE PROVIDED WITH REACT NATIVE.

In a React Native application, everything is a component. At
the end of the component hierarchy, there are so-called primitive
components, such as Text, View, or TextInput. These components
are implemented by React Native and provided by the platform
you are targeting to support the most basic user interactions.

When we're building our application, we compose it out of smaller
building blocks. To do so, we use primitive components. For ex-
ample, in order to create a login screen, we would use a series of
TextInput components to register user details and a Touchable
component to handle user interaction. This approach is true from
the very first component that we create within our application and
holds true through the final stage of its development.

On top of primitive components, React Native ships with a set
of higher-order components that are designed and optimized to
serve a certain purpose. Being unaware of them or not using them
can potentially affect your application performance, especially as
you populate your state with real production data. A bad perfor-
mance of your app may seriously harm the user experience. In
consequence, it can make your clients unsatisfied with your prod-
uct and turn them towards your competitors.

FIND OUT HOW TO USE DEDICATED HIGHER-
ORDERED REACT NATIVE COMPONENTS
TO IMPROVE THE USER EXPERIENCE AND
THE PERFORMANCE OF YOUR APPS

37

Use dedicated components for certain layouts The Ultimate Guide to React Native Optimization

NOT USING SPECIALIZED COMPONENTS WILL AFFECT YOUR
PERFORMANCE AND UX AS YOUR DATA GROWS.

If you're not using specialized components, you are opting out of
performance improvements and risking a degraded user experi-
ence when your application enters production. It is worth noting
that certain issues remain unnoticed while the application is devel-
oped, as mocked data is usually small and doesn't reflect the size
of a production database. Specialized components are more com-
prehensive and have a broader API to cover than the vast majority
of mobile scenarios.

SOLUTION: ALWAYS USE A SPECIALIZED COMPONENT,
E.G. FLATLIST FOR LISTS.

Let's take long lists as an example. Every application contains a list
at some point. The fastest and dirtiest way to create a list of el-
ements would be to combine ScrollView and View primitive
components.

However, such an example would quickly become problematic
when the data grows. Dealing with large data-sets, infinite scrolling,
and memory management was the motivation behind FlatList –
a dedicated component in React Native for displaying and working
with data structures like this.

Compare the performance of adding a new list element based on
ScrollView

import React, { useCallback, useState } from 'react';
import { ScrollView, View, Text, Button, StyleSheet } from
'react-native';

const objects = [
 ['avocado', '🥑'],
 ['apple', '🍏'],
 ['orange', '🍊'],
 ['cactus', '🌵'],
 ['eggplant', '🍆'],
 ['strawberry', '🍓'],
 ['coconut', '🥥'],

38

Use dedicated components for certain layouts The Ultimate Guide to React Native Optimization

Read more: https://snack.expo.dev/@callstack-snack/scrollview-example

to a list based on FlatList .

];
const getRandomItem = () => {
 const item = objects[~~(Math.random() * objects.length)];

 return {
 name: item[0],
 icon: item[1],
 id: Date.now() + Math.random(),
 };
};

const _items = Array.from(new Array(5000)).map(getRandomItem);

const List = () => {
 const [items, setItems] = useState(_items);

 const addItem = useCallback(() => {
 setItems([getRandomItem()].concat(items));
 }, [items]);

 return (
 <View style={styles.container}>
 <Button title=''add item'' onPress={addItem} />
 <ScrollView>
 {items.map(({ name, icon, id }) => (
 <View style={styles.itemContainer} key={id}>
 <Text style={styles.name}>{name}</Text>
 <Text style={styles.icon}>{icon}</Text>
 </View>
))}
 </ScrollView>
 </View>
);
};

const styles = StyleSheet.create({
 container: {
 marginTop: 30,
 },
 itemContainer: {
 borderWidth: 1,
 margin: 3,
 padding: 5,
 flexDirection: 'row',
 },
 name: {
 fontSize: 20,
 width: 150,
 },
 icon: {
 fontSize: 20,
 },
});

export default List;

https://snack.expo.dev/@callstack-snack/scrollview-example

39

Use dedicated components for certain layouts The Ultimate Guide to React Native Optimization

import React' { useCallback' useState } from 'react';
import { View' Text' Button' FlatList' StyleSheet } from 're-
act-native';

const objects = [
 'avocado 🥑''
 'apple 🍏''
 'orage 🍊''
 'cactus 🌵''
 'eggplant 🍆''
 'strawberry 🍓''
 'coconut 🥥''
];
const getRandomItem = () => {
 const item = objects[~~(Math.random() * objects.length)].
split(' ');

 return {
 name: item[0],
 icon: item[1],
 id: Date.now() + Math.random(),
 };
};

const _items = Array.from(new Array(5000)).map(getRandomItem);

const List = () => {
 const [items, setItems] = useState(_items);

 const addItem = useCallback(() => {
 setItems([getRandomItem()].concat(items));
 }, [items]);

 const keyExtractor = useCallback(({ id }) => id.toString(),
[]);

 const renderItem = useCallback(
 ({ item: { name, icon } }) => (
 <View style={styles.itemContainer}>
 <Text style={styles.name}>{name}</Text>
 <Text style={styles.icon}>{icon}</Text>
 </View>
),
 [],
);

 return (
 <View style={styles.container}>
 <Button title=''add item'' onPress={addItem} />
 <FlatList
 data={items}
 keyExtractor={keyExtractor}
 renderItem={renderItem}
 />
 </View>
);
};

40

Use dedicated components for certain layouts The Ultimate Guide to React Native Optimization

Read more: https://snack.expo.dev/@callstack-snack/flatlist-example

The difference is significant, isn't it? In the provided example of
5000 list items, the ScrollView version does not even scroll
smoothly.

At the end of the day, FlatList uses ScrollView and View
components as well. What's the deal then?

Well, the key lies in the logic that is abstracted away within
the FlatList component. It contains a lot of heuristics and ad-
vanced JavaScript calculations to reduce the amount of extra-
neous renderings that happen while you're displaying the data
on screen and to make the scrolling experience always run at
60FPS. Just using FlatList may not be enough in some cas-
es. FlatList performance optimizations rely on not rendering
elements that are currently not displayed on the screen.

The most costly part of the process is layout measuring. FlatList
has to measure your layout to determine how much space in
the scroll area should be reserved for upcoming elements.

For complex list elements, it may slow down the interaction
with FlatList significantly. Every time FlatList approaches

const styles = StyleSheet.create({
 container: {
 marginTop: 30,
 },
 itemContainer: {
 borderWidth: 1,
 margin: 3,
 padding: 5,
 flexDirection: 'row',
 },
 name: {
 fontSize: 20,
 width: 150,
 },
 icon: {
 fontSize: 20,
 },
});

export default List;

https://snack.expo.dev/@callstack-snack/flatlist-example

41

Use dedicated components for certain layouts The Ultimate Guide to React Native Optimization

to render the next batch of data, it will have to wait for all the new
items to render to measure their height.

However, you can implement getItemHeight() to define the el-
ement height up-front without the need for measurement. It is not
straightforward for items without a constant height. You can cal-
culate the value based on the number of lines of text and other
layout constraints.

We recommend using the react-native-text-size library to
calculate the height of the displayed text for all list items at once.
In our case, it significantly improved the responsiveness for scroll
events of FlatList on Android.

FLASHLIST AS A SUCCESSOR TO FLATLIST

As already discussed, FlatList drastically improves the per-
formance of a huge list compared to ScrollView. Despite proving
itself as a performant solution, it has some caveats.

There are popular cases where developers or users have encoun-
tered, for instance, blank spaces while scrolling, laggy scrolling,
and a list not being snappy, almost on a daily basis. FlatList is
designed to keep certain elements in memory, which adds over-
head on the device and eventually slows the list down, and blank
areas happen when FlatList fails to render the items fast
enough.

We can, however, minimize these problems to some extent by
following the tips here, but still, in most cases, we want more
smoothness and snappy lists. With FlatList , the JS thread is
busy most of the time and we always fancy having that 60FPS tag
associated with our JS thread when we're scrolling the list.

So how should we approach such issues? If not FlatList , then
what? Luckily for us, the folks at Shopify developed a pretty good
drop-in replacement for FlatList , known as FlashList .
The library works on top of RecyclerListView, leveraging its
recycling capability and fixing common pain points such as

https://reactnative.dev/docs/optimizing-flatlist-configuration
https://shopify.github.io/flash-list/docs/
https://github.com/Flipkart/recyclerlistview

42

Use dedicated components for certain layouts The Ultimate Guide to React Native Optimization

complicated API, using cells with dynamic heights, or first render
layout inconsistencies.

 FlashList recycles the views that are outside of the view-
port and re-uses them for other items. If the list has different
items, FlashList uses a recycle pool to use the item based
on its type. It's crucial to keep the list items as light as possible,
without any side effects, otherwise, it will hurt the performance
of the list.

There are a couple of props that are quite important with FlashList .
First is estimatedItemSize , the approximate size of the list
item. It helps FlashList to decide how many items to ren-
der before the initial load and while scrolling. If we have differ-
ent-sized items, we can average them. We can get this value
in a warning by the list, if we do not supply it on the first ren-
der and then use it forward. The other way is to use the ele-
ment inspector from the dev support in the React Native app.
The second prop is overrideItemLayout , which is prioritized
over estimatedItemSize . If we have different-sized items and
we know their sizes, it's better to use them here instead of aver-
aging them.

Let's talk about measuring FlashList . Remember to turn on
release mode for the JS bundle beforehand. FlashList can
appear to be slower than FlatList in dev mode. The primary
reason is a much smaller and fixed windowSize equivalent. We
can leverage FlashList 's built-in callback functions to measure
the blank area onBlankArea and list load time onLoad . You
can read more about available helpers in the Metrics section of
the documentation.

We can also use Bamlab's Flashlight, which gives us the results
for FPS on the release builds in the form of a performance report.
It also creates a nice-looking graph of CPU usage over the peri-
od of profiling, so we can verify how certain actions affect this
metric. For now, Flashlight supports Android only, but the team is
working on supporting iOS.

https://shopify.github.io/flash-list/docs/metrics/
https://github.com/bamlab/android-performance-profiler

43

Use dedicated components for certain layouts The Ultimate Guide to React Native Optimization

Performance report from Bamlab's Flashlight

With Flashlight there is no need to install anything in your app,
making this tool even easier to use. It can also measure perfor-
mance of production apps and generate very handsome look-
ing web reports which include: Total CPU usage, CPU usage per
thread and RAM utilization.

There are 2 ways of using Flashlight – you can run it locally:
•	 curl https://get.flashlight.dev | bash
•	 or in the cloud with flashlight.dev

Thanks to using specialized components, your application will al-
ways run as fast as possible. You can automatically opt-in to all
the performance optimizations performed by React Native and
subscribe for further updates. At the same time, you also save

https://get.flashlight.dev | bash

44

Use dedicated components for certain layouts The Ultimate Guide to React Native Optimization

yourself a lot of time reimplementing the most common UI patterns
from the ground up, sticky section headers, pull to refresh – you
name it. These are already supported by default if you choose to
go with FlashList .

The Ultimate Guide to React Native Optimization

THINK TWICE BEFORE YOU
PICK AN EXTERNAL LIBRARY

PART 1 | CHAPTER 3

46

Think twice before you pick an external library The Ultimate Guide to React Native Optimization

ISSUE: YOU ARE CHOOSING LIBRARIES
WITHOUT CHECKING WHAT IS INSIDE

JavaScript development is like assembling applications out of small-
er blocks. To a certain degree, it is very similar to building React
Native apps. Instead of creating React components from scratch,
you are on the hunt for the JavaScript libraries that will help you
achieve what you had in mind. The JavaScript ecosystem pro-
motes such an approach to development and encourages struc-
turing applications around small and reusable modules.

This type of ecosystem has many advantages, but also some se-
rious drawbacks. One of them is that developers can find it hard
to choose from multiple libraries supporting the same use case.

When picking the one to use in the next project, they often re-
search the indicators that tell them if the library is healthy and well
maintained, such as GitHub stars, the number of issues, contrib-
utors, and PRs.

What they tend to overlook is the library's size, number of support-
ed features, and external dependencies. They assume that since
React Native is all about JavaScript and embracing the existing
toolchain, they will work with the same constraints and best prac-
tices they know from making web applications.

Truth is, they won't, as mobile development is fundamentally dif-
ferent and has its own set of rules. For example, while the size
of the assets is crucial in the case of web applications, it is not

HOW WORKING WITH THE RIGHT
JAVASCRIPT LIBRARIES CAN
HELP YOU BOOST THE SPEED AND
PERFORMANCE OF YOUR APPS.

47

Think twice before you pick an external library The Ultimate Guide to React Native Optimization

as equally important in React Native, where assets are located in
the filesystem.

The key difference lies in the performance of the mobile devices
and the tooling used for bundling and compiling the application.

Although you will not be able to do much about the device limita-
tions, you can control your JavaScript code. In general, less code
means faster opening time. And one of the most important factors
affecting the overall size of your code is libraries.

COMPLEX LIBRARIES HAMPER THE SPEED OF YOUR APPS

Unlike a fully native application, a React Native app contains
a JavaScript bundle that needs to be loaded into memory. Then
it is parsed and executed by the JavaScript VM. The overall size
of the JavaScript code is an important factor.

Interpretation with conventional engine engine

While that happens, the application remains in the loading state.
We often describe this process as TTI – Time to Interactive. It is
a time expressed in (well, hopefully) the milliseconds between
when the icon gets selected from the application drawer and when
it becomes fully interactive.

Unfortunately, Metro – the default React Native bundler – currently
doesn't support tree shaking. If you're not familiar with this notion,
read this article.

This means that all the code that you pull from NPM and import to
your project will be present in your production JS bundle, load-
ed into memory, and parsed.That can have a negative impact on
the total startup time of your application.

https://developers.google.com/web/tools/lighthouse/audits/time-to-interactive
https://github.com/facebook/metro/issues/227#issuecomment-583358386
https://en.wikipedia.org/wiki/Tree_shaking

48

Think twice before you pick an external library The Ultimate Guide to React Native Optimization

What's worth pointing out is that it's not the case with Hermes
engine, which automatically pages only necessary bytecode into
memory. Read more in the Hermes chapter.

HOW DO WE ANALYZE BUNDLE SIZE

Keeping tabs on your bundle size is very important. We can make
use of the react-native-bundle-visualizer to analyze the bundle
with the help of GUI. We can get the details of any added library
in the bundle; hence deciding if it's worth keeping or removing
that library. This package produces output using the app bundle
in the following form:

SOLUTION: BE MORE SELECTIVE AND USE
SMALLER SPECIALIZED LIBRARIES.

The easiest way to overcome this issue is to employ the right strat-
egy for architecturing the project upfront.

If you are about to pull a complex library, check if there are smaller
alternatives that have the functionality you're looking for.

Here's an example: One of the most common operations is manip-
ulating dates. Let's imagine you are about to calculate an elapsed

https://github.com/IjzerenHein/react-native-bundle-visualizer
https://raw.githubusercontent.com/IjzerenHein/react-native-bundle-visualizer/main/react-native-bundle-visualizer2.gif

49

Think twice before you pick an external library The Ultimate Guide to React Native Optimization

time. Rather than pulling down the entire moment.js library (67.9
KB) to parse the date itself,

Parsing a date with moment.js

we can use day.js (only 2Kb) which is substantially smaller and
offers only the functionality that we're looking for.

Parsing a date with day.js

If there are no alternatives, a good rule of thumb is to check if you
can import a smaller part of the library.

For instance, many libraries such as lodash have already split
themselves into smaller utility sets and support environments
where dead code elimination is unavailable.

Let's say you want to use lodash map. Instead of importing
the whole library, (as presented here),

Using lodash map by importing the whole library

import moment from 'moment';

const date = moment('12-25-1995', 'MM-DD-YYYY');

import dayjs from 'dayjs';

const date = dayjs('12-25-1995', 'MM-DD-YYYY');

import { map } from 'lodash';

const square = (x) => x * x;
map([4, 8], square);

50

Think twice before you pick an external library The Ultimate Guide to React Native Optimization

you could import only a single package:

Using lodash map by importing only single function

As a result, you can benefit from the utilities that are a part of
the lodash package without pulling them all into the application
bundle.

If you'd like to have constant insight into your dependencies' size
impact, we highly recommend the import-cost VSCode extension.
Or using the Bundlephobia website.

BENEFITS: YOUR APP HAS A SMALLER FOOTPRINT AND LOADS FASTER.

Mobile is an extremely competitive environment, with lots of
applications designed to serve similar purposes and fight over
the same customers. Faster startup time, smoother interactions,
and the overall look and feel might be your only way to stand out
from the crowd.

You shouldn't downplay the importance of choosing the right set
of libraries. Being more selective with third-party dependencies
may seem irrelevant at first. But all the saved milliseconds will add
up to significant gains over time.

import map from 'lodash/map';

const square = (x) => x * x;
map([4, 8], square);

https://marketplace.visualstudio.com/items?itemName=wix.vscode-import-cost
https://bundlephobia.com/

The Ultimate Guide to React Native Optimization

ALWAYS REMEMBER TO USE
LIBRARIES DEDICATED TO
THE MOBILE PLATFORM

PART 1 | CHAPTER 4

52

Always remember to use libraries dedicated to the mobile platform The Ultimate Guide to React Native Optimization

ISSUE: YOU USE WEB LIBRARIES THAT ARE NOT OPTIMIZED FOR MOBILE.

As discussed earlier, one of the best things about React Native is
that you can write the mobile application with JavaScript, reuse
some of your React components, and do business logic with your
favorite state management library.

While React Native provides web-like functionality for compat-
ibility with the web, it is important to understand that it is not
the same environment. It has its own set of best practices, quick
wins, and constraints.

For example, while working on a web application, we dont have
to worry too much about the overall CPU resources needed by our
application. After all, most of the websites run on devices that are
either plugged into the network or have large batteries.

It is not hard to imagine that mobile is different. Theres a wide
range of devices with different architectures and resources avail-
able. Most of the time, they run on a battery and the drain caused
by the application can be a deciding factor for many developers.

In other words – how you optimize the battery consumption both
in the foreground and background can make all the difference.

USE LIBRARIES DEDICATED TO MOBILE
AND BUILD FEATURES FASTER ON
MANY PLATFORMS AT ONCE, WITHOUT
COMPROMISING ON THE PERFORMANCE
AND USER EXPERIENCE.

53

Always remember to use libraries dedicated to the mobile platform The Ultimate Guide to React Native Optimization

NOT OPTIMIZED LIBRARIES CAUSE BATTERY DRAIN AND SLOW DOWN
THE APP. THE OS MAY LIMIT YOUR APPLICATIONS CAPABILITIES.

While React Native makes it possible to run the same JavaScript
on mobile as in the browser, that doesnt mean you should be
doing this every time. As with every rule, there are exceptions.

If the library depends heavily on networking, such as real-time
messaging or offers the ability to render advanced graphics (3D
structures, diagrams), it is very likely that youre better off going
with a dedicated mobile library.

Mobile libraries were developed within the web environment
in the first place, assuming the capabilities and constraints of
the browser. It is very likely that the result of using a web ver-
sion of a popular SDK will result in extraneous CPU and memory
consumption.

Certain OSs, such as iOS, are known to be constantly analyzing
the resources consumed by the application in order to optimize
the battery life. If your application is registered to perform back-
ground activities and these activities take too much of the re-
sources, the interval for your application may get adjusted, low-
ering the frequency of the background updates that you initially
signed up for.

SOLUTION: USE A DEDICATED, PLATFORM-
SPECIFIC VERSION OF THE LIBRARY.

Lets take Firebase as an example. Firebase is a mobile platform
from Google that lets you build your apps faster. It is a collection
of tools and libraries that enable certain features instantly within
your app.

Firebase contains SDKs for the web and mobile – iOS and Android
respectively. Each SDK contains support for Realtime Database.

54

Always remember to use libraries dedicated to the mobile platform The Ultimate Guide to React Native Optimization

Thanks to React Native, you can run the web version of it without
major problems:

An example reading from Firebase Realtime Database in RN

However, this is not what you should be doing. While the above
example works without issues, it does not offer the same perfor-
mance as the mobile equivalent. The SDK itself also contains few-
er features – no surprises here, as web is different and theres
no reason Firebase. js should provide support for mobile features.

In this particular example, it is better to use a dedicated Firebase
library that provides a thin layer on top of dedicated native SDKs
and offers the same performance and stability as any other native
application out there.

import { getDatabase, onValue, ref } from firebase/database;

const database = getDatabase();

onValue(ref(database, /users/123), (snapshot) => {
 console.log(snapshot.val());
});

55

Always remember to use libraries dedicated to the mobile platform The Ultimate Guide to React Native Optimization

Heres how the above example would look like:

An example reading from Firebase Realtime Database in RN

As you can see, the difference is minimal. In this case, the library
authors did a great job mimicking the API to reduce the potential
confusion while switching back and forth between the web and
mobile context.

BENEFITS: PROVIDE THE FASTEST AND MOST PERFORMANT
SUPPORT WITH NO HARM TO THE BATTERY LIFE.

React Native is all about giving you control and freedom to choose
how you want to build your application.

For straightforward aspects and maximum reusability, you can
choose to go with the web version of the library. This will give

import database from '@react-native-firebase/database';

database().ref('/users/123').on('value', (snapshot) => {
 console.log(snapshot.val());
});

56

Always remember to use libraries dedicated to the mobile platform The Ultimate Guide to React Native Optimization

you access to the same features as in the browser with relatively
low effort.

For advanced use cases, you can easily extend React Native with
a native functionality and talk directly to the mobile SDKs. Such
an escape hatch is what makes React Native extremely versatile
and enterprise-ready. It allows you to build features faster on
many platforms at once, without compromising on the performance
and user experience – something other hybrid frameworks can-
not claim.

The Ultimate Guide to React Native Optimization

FIND THE BALANCE BETWEEN
NATIVE AND JAVASCRIPT

PART 1 | CHAPTER 5

58

Find the balance between native and JavaScript The Ultimate Guide to React Native Optimization

ISSUE: WHILE WORKING ON NATIVE MODULES, YOU DRAW THE LINE IN
THE WRONG PLACE BETWEEN NATIVE AND JAVASCRIPT ABSTRACTIONS

When working with React Native, you're going to be developing
JavaScript most of the time. However, there are situations when
you need to write a bit of native code. For example, you're work-
ing with a third-party SDK that doesn't have official React Native
support yet. In that case, you need to create a native module
that wraps the underlying native methods and exports them to
the React Native realm.

All native methods need real-world arguments to work. React
Native builds on top of an abstraction called a bridge, which pro-
vides bidirectional communication between JavaScript and native
worlds.

Note: There's an ongoing effort to move away from
asynchronous bridge communication to a synchronous one.
You can read more about it in the New Architecture chapter.

As a result, JavaScript can execute native APIs and pass the nec-
essary context to receive the desired return value. The commu-
nication itself is asynchronous – it means that while the caller is
waiting for the results to arrive from the native side, the JavaScript
is still running and may already be up for another task.

SEEK THE HARMONY BETWEEN NATIVE AND
JAVASCRIPT TO BUILD FAST-WORKING
AND LOW-MAINTENANCE APPS.

59

Find the balance between native and JavaScript The Ultimate Guide to React Native Optimization

The number of JavaScript calls that arrive over the bridge is not
deterministic and can vary over time, depending on the number of
interactions that you do within your application. Additionally, each
call takes time, as the JavaScript arguments need to be stringified
into JSON, which is the established format that can be understood
by these two realms.

For example, when the bridge is busy processing the data, another
call will have to block and wait. If that interaction was related to
gestures and animations, it is very likely that you have a dropped
frame – the operation wasn't performed causing jitters in the UI.

60

Find the balance between native and JavaScript The Ultimate Guide to React Native Optimization

Certain libraries, such as Animated provide special workarounds.
In this case, use NativeDriver , which serializes the animation,
passes it once upfront to the native thread, and doesn't cross
the bridge while the animation is running – preventing it from being
subject to accidental frame drops while other work is happening.

That's why it is important to keep the bridge communication effi-
cient and fast.

MORE TRAFFIC FLOWING OVER THE BRIDGE
MEANS LESS SPACE FOR OTHER THINGS

Passing more traffic over the bridge means that there is less space
for other important things that React Native may want to transfer
at that time. As a result, your application may become unrespon-
sive to gestures or other interactions while you're performing na-
tive calls.

If you are seeing a degraded UI performance while executing cer-
tain native calls over the bridge or seeing substantial CPU con-
sumption, you should take a closer look at what you are doing
with the external libraries. It is very likely that there is more being
transferred than should be.

SOLUTION: USE THE RIGHT AMOUNT OF ABSTRACTION ON THE JS
SIDE – VALIDATE AND CHECK THE TYPES AHEAD OF TIME.

When building a native module, it is tempting to proxy the call im-
mediately to the native side and let it do the rest. However, there
are cases, such as invalid arguments, that end up causing an un-
necessary round-trip over the bridge only to learn that we didn't
provide the correct set of arguments.

61

Find the balance between native and JavaScript The Ultimate Guide to React Native Optimization

Let's take a JavaScript module that proxies the call straight to
the underlying native module.

Bypassing arguments to the native module

In the case of an incorrect or missing parameter, the native mod-
ule is likely to throw an exception. The current version of React
Native doesn't provide an abstraction for ensuring the JavaScript
parameters and the ones needed by your native code are in sync.
Your call will be serialized to JSON, transferred to the native side,
and executed.

That operation will perform without any issues, even though we
haven't passed the complete list of arguments needed for it to
work. The error will arrive when the native side processes the call
and receives an exception from the native module.

In such a scenario, you have lost some time waiting for the excep-
tion that you could've checked for beforehand.

Using the native module with arguments validation

import { NativeModules } from 'react-native';
const { ToastExample } = NativeModules;

export const show = (message, duration) => {
 ToastExample.show(message, duration);
};

import { NativeModules } from 'react-native';
const { ToastExample } = NativeModules;

export const show = (message, duration) => {
 if (typeof message !== 'string' || message.length > 100) {
 throw new Error('Invalid Toast content');
 }

 if (!Number.isInteger(duration) || duration > 20000) {
 throw new Error('Invalid Toast duration');
 }

 ToastExample.show(message, duration);
};

62

Find the balance between native and JavaScript The Ultimate Guide to React Native Optimization

The above is not only tied to the native modules themselves. It is
worth keeping in mind that every React Native primitive compo-
nent has its native equivalent and component props are passed
over the bridge every time there's a rendering happening – or is
it? It's not always the case when a component re-renders. React
Native renderer is smart enough to diff the parts of our JS
React component hierarchy and only send enough information
through the bridge, so that the native view hierarchy is updated.

This is the case when styling components like e.g. View or Text
using the style prop. Let's take a look at the following example
using inline styles.

Read more: https://snack.expo.dev/@callstack-snack/inline-styled-view

Even though the style prop is passed as an inline object, it
doesn't cause us any performance issues. Neither when we dy-
namically change the styles based on props, nor when we re-ren-
der the App component. View passes its props almost directly
to the underlying native representation. And thanks to the React
Native renderer, no matter how often we re-render this component
on the JS side, only the smallest amount of data necessary to up-
date the style prop will be passed through the bridge.

import React from 'react';
import { View } from 'react-native';

const App = () => {
 return (
 <View
 style={{
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 }}>
 <View
 style={{
 backgroundColor: 'coral',
 width: 200,
 height: 200,
 }}
 />
 </View>
);
};

export default App;

https://snack.expo.dev/@callstack-snack/inline-styled-view

63

Find the balance between native and JavaScript The Ultimate Guide to React Native Optimization

In React Native we have nicer ways to deal with styling and it's
through StyleSheet API – a dedicated abstraction similar to CSS
StyleSheets. Although it provides no performance benefits, it's
worth calling it out for the ease of development and maintenance.
When we develop our app in TypeScript or Flow, StyleSheet is well
typed and makes it possible for our code editors to auto-complete.

BENEFITS: THE CODEBASE IS FASTER AND EASIER TO MAINTAIN

Whether you're facing any performance challenges right now, it is
smart to implement a set of best practices around native modules
as the benefits are not just about the speed but also the user ex-
perience. Sure, keeping the right amount of the traffic flowing over
the bridge will eventually contribute to your application perform-
ing better and working smoothly. As you can see, certain tech-
niques mentioned in this section are already being actively used
inside React Native to provide you a satisfactory performance out
of the box. Being aware of them will help you create applications
that perform better under a heavy load.

HOWEVER, ONE ADDITIONAL BENEFIT THAT IS WORTH
POINTING OUT IS THE MAINTENANCE.

Keeping the heavy and advanced abstractions, such as validation,
on the JavaScript side will result in a very thin native layer that is
nothing more but just a wrapper around an underlying native SDK.
In other words, the native part of your module is going to look
more like a copy-paste from the documentation – comprehensi-
ble and specific.

Mastering this approach to the development of native modules
is why a lot of JavaScript developers can easily extend their ap-
plications with additional functionality without specializing in
Objective-C or Java.

The Ultimate Guide to React Native Optimization

ANIMATE AT 60FPS –
NO MATTER WHAT

PART 1 | CHAPTER 6

65

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

ISSUE: JS-DRIVEN ANIMATIONS ARE OCCUPYING THE BRIDGE
TRAFFIC AND SLOWING DOWN THE APPLICATION.

Mobile users are used to smooth and well-designed interfaces
that quickly respond to their interactions and provide prompt vi-
sual feedback. As a result, applications have to register a lot of
animations in many places that will have to run while other work
is happening.

As we know from the previous section, the amount of information
that can be passed over the bridge is limited. There's currently no
built-in priority queue. In other words, it is on you to structure and
design your application in a way that both the business logic and
animations can function without any disruptions. This is different
from the way we are used to performing animations. For example,
on iOS, the built-in APIs offer unprecedented performance and
are always scheduled with the appropriate priority. Long story
short – we don't have to worry too much about ensuring they're
running at 60FPS.

With React Native, this story is a bit different. If you do not think
about your animations top-down beforehand and choose the right
tools to tackle this challenge, you're on track to run into dropped
frames sooner or later.

USE NATIVE SOLUTIONS TO ACHIEVE
SMOOTH ANIMATIONS AND A GESTURE-
DRIVEN INTERFACE AT 60FPS.

66

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

JANKY OR SLOW ANIMATIONS AFFECT THE PERCEPTION OF
THE APP, MAKING IT LOOK SLOW AND UNFINISHED

In today's sea of applications, providing a smooth and interactive
UI might be one of your only ways to win over customers who are
looking to choose the app to go.

If your application fails to provide a responsive interface that works
well with the user interactions (such as gestures), not only may
it affect new customers, but also decrease the ROI and user
sentiment.

Mobile users like the interfaces that follow them along and that look
top-notch and ensure the animations are always running smoothly
is a fundamental part that builds such an experience.

SOLUTION: IF IT'S POSSIBLE, USE NATIVE AND CORRECT ANIMATIONS.

One-off animations

Enabling the usage of the native driver is the easiest way of quickly
improving your animations' performance. However, the subset of
style props that can be used together with the native driver is lim-
ited. You can use it with non-layout properties like transforms and
opacity. It will not work with colors, height, and others. Those are
enough to implement most of the animations in your app because
you usually want to show/hide something or change its position.

Enabling the native driver for opacity animation

const fadeAnim = useRef(new Animated.Value(0)).current;

const fadeIn = () => {
 Animated.timing(fadeAnim, {
 toValue: 1,
 duration: 1000,
 useNativeDriver: true, // enables native driver
 }).start();
};

// [...]

<Animated.View style={{ opacity: fadeAnim }} />

67

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

For more complex use cases, you can use the React Native
Reanimated library. Its API is compatible with the basic Animated
library and introduces a set of fine-grained controls for your an-
imations with a modern hooks-based interface. More importantly,
it introduces the possibility to animate all possible style props with
the native driver. So animating height or color will no longer be
an issue. However, transform and opacity animations will still be
slightly faster since they are GPU-accelerated. You can play with
different combinations in this reanimated playground.

GESTURE-DRIVEN ANIMATIONS

The most desired effect that can be achieved with animations is
being able to control animation with a gesture. For your customers,
this is the most enjoyable part of the interface. It builds a strong
sentiment and makes the app feel very smooth and responsive.
Plain React Native is very limited when it comes to combining
gestures with native driven animations. You can utilize ScrollView
scroll events to build things like a smooth collapsible header.

For more sophisticated use cases, there is an awesome library –
React Native Gesture Handler – which allows you to handle dif-
ferent gestures natively and interpolate those into animations.
You can build a swipeable element by combining it with Animated.
While it will still require JS callbacks, there is a remedy for that!

The most powerful pair of tools for gesture-driven animations is
using Gesture Handler combined with Reanimated. They were de-
signed to work together and give the possibility to build complex
gesture-driven animations that are fully calculated on the native
side.

Reanimated API supports synchronous JavaScript execution on
the UI thread using the concept of worklets. The library's runtime
spawns a secondary JS context on the UI thread that is then able
to run JavaScript functions in the form of said worklets. Now us-
ing your imagination and leveraging Reanimated, you can create
wonderful animations at full available speeds.

https://reanimated.funcs.io/
https://docs.swmansion.com/react-native-gesture-handler/docs/
https://docs.swmansion.com/react-native-gesture-handler/docs/
https://docs.swmansion.com/react-native-reanimated/docs/fundamentals/glossary#worklet

68

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

import React from 'react';
import { StyleSheet, View } from 'react-native';
import { PanGestureHandler } from 'react-native-gesture-han-
dler';
import Animated, {
 useAnimatedGestureHandler,
 useAnimatedStyle,
 useSharedValue,
 withSpring,
} from 'react-native-reanimated';

const Snappable = (props) => {
 const startingPosition = 0;
 const x = useSharedValue(startingPosition);
 const y = useSharedValue(startingPosition);

 const animatedStyle = useAnimatedStyle(() => {
 return {
 transform: [{ translateX: x.value }, { translateY: y.va-
lue }],
 };
 });

 const eventHandler = useAnimatedGestureHandler({
 onStart: (event, ctx) => {
 ctx.startX = x.value;
 ctx.startY = y.value;
 },
 onActive: (event, ctx) => {
 x.value = ctx.startX + event.translationX;
 y.value = ctx.startY + event.translationY;
 },
 onEnd: (event, ctx) => {
 x.value = withSpring(startingPosition);
 y.value = withSpring(startingPosition);
 },
 });

 return (
 <PanGestureHandler onGestureEvent={eventHandler}>
 <Animated.View style={animatedStyle}>{props.children}</
Animated.View>
 </PanGestureHandler>
);
};

const Example = () => {
 return (
 <View style={styles.container}>
 <Snappable>
 <View style={styles.box} />
 </Snappable>
 </View>
);
};

export default Example;

69

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

Read more: https://snack.expo.dev/@callstack-snack/gesture-with-animation

Low-level handling of gestures might not be a piece of cake, but
fortunately, there are third-party libraries that utilize the mentioned
tools and expose the prop callbackNode . It's an Animated.Value
that's derived from specific gesture behavior. Its value range is
usually from 0 to 1, which follows the progress of the gesture. You
can interpolate the values to animated elements on the screen.
A great example of the libraries that expose CallbackNode
are reanimated-bottom-sheet and react-native-tab-view .

const BOX_SIZE = 100;

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 box: {
 width: BOX_SIZE,
 height: BOX_SIZE,
 borderColor: '#F5FCFF',
 alignSelf: 'center',
 backgroundColor: 'plum',
 margin: BOX_SIZE / 2,
 },
});

import * as React from 'react';
import { StyleSheet, Text, View } from 'react-native';
import Animated from 'react-native-reanimated';
import BottomSheet from 'reanimated-bottom-sheet';
import Lorem from './Lorem';

const { Value, interpolateNode: interpolate } = Animated;

const Example = () => {
 const gestureCallbackNode = new Value(0);

 const renderHeader = () => (
 <View style={styles.headerContainer}>
 <Text style={styles.headerTitle}>Drag me</Text>
 </View>
);

 const renderInner = () => (
 <View style={styles.innerContainer}>
 <Animated.View
 style={{
 opacity: interpolate(gestureCallbackNode, {

https://snack.expo.dev/@callstack-snack/gesture-with-animation

70

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

Read more: https://snack.expo.dev/@callstack-snack/interpolation

 inputRange: [0, 1],
 outputRange: [1, 0],
 }),
 transform: [
 {
 translateY: interpolate(gestureCallbackNode, {
 inputRange: [0, 1],
 outputRange: [0, 100],
 }),
 },
],
 }}>
 <Lorem />
 <Lorem />
 </Animated.View>
 </View>
);

 return (
 <View style={styles.container}>
 <BottomSheet
 callbackNode={gestureCallbackNode}
 snapPoints={[50, 400]}
 initialSnap={1}
 renderHeader={renderHeader}
 renderContent={renderInner}
 />
 </View>
);
};
export default Example;

const styles = StyleSheet.create({
 container: {
 flex: 1,
 },
 headerContainer: {
 width: '100%',
 backgroundColor: 'lightgrey',
 height: 40,
 borderWidth: 2,
 },
 headerTitle: {
 textAlign: 'center',
 fontSize: 20,
 padding: 5,
 },
 innerContainer: {
 backgroundColor: 'lightblue',
 },
});

https://snack.expo.dev/@callstack-snack/interpolation

71

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

GIVING YOUR JS OPERATIONS A LOWER PRIORITY

It is not always possible to fully control the way animations are
implemented. For example, React Navigation uses a combination
of React Native Gesture Handler and Animated which still
needs JavaScript to control the animation runtime. As a result,
your animation may start flickering if the screen you are navigating
to loads a heavy UI. Fortunately, you can postpone the execution
of such actions using InteractionManager . This handy helper
allows long-running work to be scheduled after any interactions/
animations have completed. In particular, this allows JavaScript
animations to run smoother.

Note: In the near future, you'll be able to achieve
similar behavior with React itself on a renderer level
(with Fabric) using the startTransition API. Read
more about it in the New Architecture chapter.

import React, { useState, useRef } from 'react';
import {
 Text,
 View,
 StyleSheet,
 Button,
 Animated,
 InteractionManager,
 Platform,
} from 'react-native';
import Constants from 'expo-constants';

const ExpensiveTaskStates = {
 notStared: 'not started',
 scheduled: 'scheduled',
 done: 'done',
};

const App = () => {
 const animationValue = useRef(new Animated.Value(100));
 const [animationState, setAnimationState] = useState(false);
 const [expensiveTaskState, setExpensiveTaskState] = useSta-
te(
 ExpensiveTaskStates.notStared,
);

 const startAnimationAndScheduleExpensiveTask = () => {
 Animated.timing(animationValue.current, {
 duration: 2000,
 toValue: animationState ? 100 : 300,

72

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

 useNativeDriver: false,
 }).start(() => {
 setAnimationState((prev) => !prev);
 });
 setExpensiveTaskState(ExpensiveTaskStates.scheduled);
 InteractionManager.runAfterInteractions(() => {
 setExpensiveTaskState(ExpensiveTaskStates.done);
 });
 };

 return (
 <View style={styles.container}>
 {Platform.OS === 'web' ? (
 <Text style={styles.infoLabel}>
 ❗InteractionManager works only on native platforms.
Open example on
 iOS or Android❗
 </Text>
) : (
 <>
 <Button
 title=''Start animation and schedule expensive
task''
 onPress={startAnimationAndScheduleExpensiveTask}
 />
 <Animated.View
 style={[styles.box, { width: animationValue.cur-
rent }]}>
 <Text>Animated box</Text>
 </Animated.View>
 <Text style={styles.paragraph}>
 Expensive task status: {expensiveTaskState}
 </Text>
 </>
)}
 </View>
);
};

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 paddingTop: Constants.statusBarHeight,
 padding: 8,
 },
 paragraph: {
 margin: 24,
 fontSize: 18,
 textAlign: 'center',
 },
 box: {
 backgroundColor: 'coral',
 marginVertical: 20,
 height: 50,
 },
 infoLabel: {

73

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

Read more: https://snack.expo.dev/@callstack-snack/interaction-manager

In practice, you can show a placeholder, wait for the anima-
tion to finish, and then render the actual UI. It would help your
JavaScript animations to run smoother and avoid interruptions
by other operations. It's usually smooth enough to provide a great
experience.

BENEFITS: ENJOY SMOOTH ANIMATIONS AND
A GESTURE-DRIVEN INTERFACE AT 60FPS.

There's no one single right way of doing animations in React Native.
The ecosystem is full of different libraries and approaches to han-
dling interactions. The ideas suggested in this section are just rec-
ommendations to encourage you to not take the smooth interface
for granted.

What is more important is painting that top-down picture in
your head of all interactions within the application and choosing
the right ways of handling them. There are cases where JavaScript-
driven animations will work just fine. At the same time, there are
interactions where native animation (or an entirely native view)
will be your only way to make it smooth.

With such an approach, the application you create will be smoother
and snappy. It will not only be pleasant for your users to use but
also for you to debug and have fun with it while developing.

USING REANIMATED

One of the main benefits of using React Native Reanimated is its
ability to perform animations directly on the native thread rather
than the JavaScript thread. This can lead to significant perfor-
mance improvements and smoother animations, especially on

 textAlign: 'center',
 },
});

export default App;

https://snack.expo.dev/@callstack-snack/interaction-manager

74

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

older or slower devices. With Animated from react-native, you
can only animate transforms and opacities on the native thread,
the rest should be on the JS thread, which can lead to janky and
slow animations as mentioned in the above section, but this is not
the case with Reanimated. With Reanimated, you can animate all
style properties on the Native thread, and this is really powerful.

Now that we have some knowledge about some primitives offered
by Reanimated, let me illustrate a use case where we are going to
animate the width, height, border radius, background color, and
border color, everything without dropping any frames.

import * as React from 'react';
import { View, StyleSheet } from 'react-native';
import Constants from 'expo-constants';
import Animated, {
 withRepeat,
 withDelay,
 withSequence,
 withTiming,
 interpolateColor,
 interpolate,
 useAnimatedStyle,
 useSharedValue,
} from 'react-native-reanimated';

export default function App() {
 // Define the shared animated value
 const animatedValue = useSharedValue(0);
 React.useEffect(() => {
 // Start the animation
 animatedValue.value = withRepeat(
 withSequence(
 withDelay(1000, withTiming(1)),
 withDelay(1000, withTiming(0))
),
 Infinity,
 true
);
 }, []);

 const animatedStyle = useAnimatedStyle(() => {
 return {
 width: interpolate(animatedValue.value, [0, 1], [50,
100]),
 height: interpolate(animatedValue.value, [0, 1], [50,
100]),
 // from square to circle
 borderRadius: interpolate(animatedValue.value, [0, 1],
[0, 50]),

https://reactnative.dev/docs/animated

75

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

Reanimated give us lots of primitives that we can use to create
powerful, complex and performant animations.

HOOKS & METHODS

useSharedValue

Shared values can carry data, provide a way to react to change,
drive animations, and, most importantly, it’s reactive. Being reac-
tive, it means that whoever is using this shared value will receive
updates in real time.

The data is stored on the UI Thread, but it can be accessed from
the JS Thread as well, hence the name “shared”. SharedValues
can be a number, a boolean, a string, an object, and an array.

 backgroundColor: interpolateColor(
 animatedValue.value,
 [0, 1],
 ['gold', 'salmon']
),
 borderColor: interpolateColor(
 animatedValue.value,
 [0, 1],
 ['purple', 'papayawhip']
),
 borderWidth: 10,
 };
 }, [animatedValue.value]);

 return (
 <View style={styles.container}>
 <Animated.View style={animatedStyle} />
 </View>
);
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 paddingTop: Constants.statusBarHeight,
 backgroundColor: '#333',
 padding: 8,
 },
});

76

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

useDerivedValue

It’s a shared value but used when deriving or creating a new value
out of a shared value. This is useful when you’d like to abstract
some logic, like interpolate, some Math operations or for reusabil-
ity purposes.

useAnimatedStyle

It’s used when a style attribute will need to update based on
a shared value or a particular style attribute depends on a shared
value. The return of this hook it’s going to be a “reactive” style.

useAnimatedProp

This is the counterpart of useAnimatedStyle but for non-style at-
tributes like svg path, input value, etc.

const anim = useSharedValue(number | string | boolean | object
| array)

const newAnim = useDerivedValue(() => {
 return anim.value + 100;
}, [anim.value])

const styles = useAnimatedStyle(() => ({
 opacity: anim.value,
 width: anim.value * 10
}, [anim.value])

const animatedProps = useAnimatedProps(() => ({
 path:`
 M 100,100
 A anim.value, anim.value 0,0,1 10, 20
 A anim.value, anim.value 0,0,1 10, 20
 Q 90,60 50,90
 Q 10,60 10,30 z
 `,
})

77

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

interpolate

This method will let you remap values from on inputRange and
outputRange

interpolateColor

As interpolate but for colors where outputRange it’s an array
that contains color values.

Timing functions

We can use timing functions to animate shared values. You can
use withTiming, withSpring, withDecay. You can alter the default
behaviour of these timing functions using withDelay, withRepeat
or withSequence. The great part of it is that we can combine them
as we like:

const styles = useAnimatedStyle(() => ({
 width: interpolate(
 anim.value // sharedValue
 [0, 1] // inputRange
 [0, 100] // outputRange
)
}, [anim.value])

const styles = useAnimatedStyle(() => ({
 color: interpolateColor(
 anim.value // sharedValue
 [0, 1] // inputRange
 [“red”, “blue”] // outputRange
)
}, [anim.value])

anim.value = withRepeat(
 withSequence(
 withDelay(1000, withTiming(1)
 withDelay(1000, withTiming(0)
)
 Infinity
 true
)

78

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

the code from above will repeat reverse a sequence of animations
with an initial delay of 1000ms

UI Primitives

In order to make the UI elements reactive to the above changes,
it’s important to know that only Animated elements will animate.
Reanimated exports the following UI Primitives:

and a method call createAnimatedComponent that will make any UI
primitive/component an Animated component. Let’s take the fol-
lowing example, where we will make the TextInput an animated
component that’s going to be reactive to shared values changes.

In case when there’s repetition inside useAnimatedStyle or
useAnimatedProp, extract this into a useDerivedValue and use
the returned value inside. Let me give you an example:

import Animated from 'react-native-reanimated'
<Animated.View />
<Animated.Text />
<Animated.Image />
<Animated.ScrollView />
<Animated.FlatList />

import Animated from 'react-native-reanimated'
import { TextInput } from 'react-native'
const AnimatedTextInput = Animated.
createAnimatedComponent(TextInput)

const animatedStyle = useAnimatedStyle(() => {
 return {
 width: interpolate(animatedValue.value, [0, 1], [50, 100]),
 height: interpolate(animatedValue.value, [0, 1], [50,
100]),
 transform: [{
 translateX: interpolate(animatedValue.value, [0, 1], [50,
100])
 }]
 };
}, [animatedValue.value]);

79

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

We can see that there’s the same interpolate with the same out-
putRange for width, height and transform.translateX, instead, we
can move it to a derived value:

In this way, we abstract and reuse the code, less error-prone code
and ultimately more performant, because the `interpolatedValue`
it’s calculated only once.

USE INTERPOLATIONS AS MUCH AS POSSIBLE

For performance reasons, it’s important to avoid animating too
many shared values, all at once. For example, instead of creating
a sharedValue for each individual style and applying a withTiming
function, try using a single sharedValue and interpolate it. In this
way your code will perform better, will be bug free and most im-
portantly, your animation will be orchestrated by a single shared
value that is easy to change in the future.

Let’s take the following component as a starting example, notice
that for each individual style property, we define a shared value.
When the component did mount, we start the animation for all 5
shared values, width, height, borderRadius, backgroundColor
and translateY, passing different.

const interpolatedValue = useDerivedValue(() => {
 return interpolate(animatedValue.value, [0, 1], [50, 100])
}, [animatedValue.value]);
const animatedStyle = useAnimatedStyle(() => {
 return {
 width: interpolatedValue.value,
 height: interpolatedValue.value,
 transform: [{
 translateX: interpolatedValue.value
 }]
 };
}, [interpolatedValue.value]);

function MyComponent() {
 const width = useSharedValue(50);
 const height = useSharedValue(50);
 const borderRadius = useSharedValue(0);
 const backgroundColor = useSharedValue(0);
 const translateY = useSharedValue(0)

80

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

As you might imagine, adding another style attribute will increase
the code usability and maintainability, which is not great. Instead,
what we could you, is to use a single shared value and interpolate
it based on our needs. Here’s how the above component can be
rewritten using a single shared value:

 React.useEffect(() => {
 width.value = withTiming(100);
 height.value = withTiming(100);
 borderRadius.value = withTiming(50);
 backgroundColor.value = withTiming(1);
 translateY.value = withTiming(50)
 }, [])

 const animatedStyle = useAnimatedStyle(() => {
 return {
 width: width.value,
 height: height.value,
 borderRadius: borderRadius.value,
 backgroundColor: interpolateColor(
 backgroundColor.value,
 [0, 1],
 ['gold', 'salmon']
),
 transform: [{
 translateY: translateY.value
 }]
 };
 });

 return <Animated.View style={animatedStyle} />
}

function MyComponent() {
 // Define the shared animated value
 const animatedValue = useSharedValue(0);
 React.useEffect(() => {
 // Start the animation
 animatedValue.value = withTiming(1);
 }, []);

 const animatedStyle = useAnimatedStyle(() => {
 return {
 width: interpolate(animatedValue.value, [0, 1], [50,
100]),
 height: interpolate(animatedValue.value, [0, 1], [50,
100]),

81

Animate at 60FPS – no matter what The Ultimate Guide to React Native Optimization

SHAREDVALUES INSTEAD OF SETSTATE OR USEREF

We can leverage shared value to store different states, without
triggering state changes. As a candidate for this example, we’re
going to create a useLayout hook, responsible for storing the lay-
out values of a component inside shared values.

 borderRadius: interpolate(animatedValue.value, [0, 1],
[0, 50]),
 backgroundColor: interpolateColor(
 animatedValue.value,
 [0, 1],
 ['gold', 'salmon']
),
 transform: [{
 translateY: interpolate(animatedValue.value, [0, 1],
[0, 50])
 }]
 };
 }, [animatedValue.value]);

 return <Animated.View style={animatedStyle} />
}

export const useLayout = () => {
 const layout = useSharedValue<LayoutRectangle>({
 x: 0,
 y: 0,
 width: 0,
 height: 0,
 });

 const onLayout = useCallback<(event: LayoutChangeEvent) =>
void>((e) => {
 const {
 nativeEvent: {
 layout: { height, width, x, y },
 },
 } = e;

 layout.value = { height, width, x, y };
 }, []);

 return {
 layout,
 onLayout,
 };
};

The Ultimate Guide to React Native Optimization

REPLACE LOTTIE WITH RIVE

PART 1 | CHAPTER 7

83

Replace Lottie with Rive The Ultimate Guide to React Native Optimization

ISSUE: REAL-TIME ANIMATIONS SUFFERING FROM
LOW FPS, FILE SIZE, AND NOT BEING ROBUST

When we talk about interactive mobile apps, we often think there'll
be using certain user driven animations. For example, we can
think of getting a nice order placed animation when we complete
a checkout. A more complex example would be onboarding steps
where the user has to tap on various buttons to move forward
and, in most cases, each step shows a nice animation. So how
can developers implement such behavior? One approach is using
GIFs. If we have 3 onboarding steps, then we will want to have 3
GIFs. And often this solution is good enough performance – and
UX-wise. But what if we need more fidelity in our animations? Or
when it needs to be high quality, maybe on a full screen? GIFs can
quickly add a few megabytes to our app's bundle.

So what other options do we have? Let's talk about Lottie. A mo-
bile client for Android and iOS, which was created by the devel-
opers at Airbnb to leverage LottieFiles, which is JSON-based
animation exported using the plugin BodyMoving from Adobe
AfterEffects. They have a pretty good community with lots of free-
to-use animations. Check it out here.

If we look at the React Native Lottie library, it is pretty popular and
well-received by the community. We can control the animation
using the progress prop or use imperative methods such as play.
There are other useful props that we can use to suit our needs.
Let's compare the size of a Lottie JSON animation and a corre-
sponding GIF.

LEVERAGE STATE MACHINES TO
PROVIDE ROBUST INTERACTIVE
ANIMATIONS AT 60FPS

https://lottiefiles.com/featured
https://github.com/lottie-react-native/lottie-react-native

84

Replace Lottie with Rive The Ultimate Guide to React Native Optimization

Source: https://lottiefiles.com/128635-letter-d

If we compare, JSON is 46.2 KB and the GIF is 164.5 KB, which is
almost 4 times as much as JSON. We can further reduce the size
of JSON using the Optimized Lottie JSON but that's a paid solu-
tion. Now if we recall the above approach of having separate GIFs
for each onboarding step, we can now use Lottie instead of GIFs
since it's smaller. We can also use the remote resources of Lottie
JSON instead of having it in a bundle but an extra effort will be
required to keep it available for offline purposes.

We can still do better, but how good will that be if we use a sin-
gle animation and control it using triggers? For example, if we tap
on a button, the state of the animation changes for the next step.
Let's say we want to change the size or do other customizations,
we can't do it in the editor provided by LottieFiles. Instead, we
will have to import that in Adobe AE and then do the adjustments
and re-export it as JSON. We can, however, customize the color
for layers in the web editor. Not everyone has expertise in using
Adobe AE and has an animator to consult, e.g. if we're working on
our pet project, we will want to adjust any animation in the web
editor.

https://lottiefiles.com/128635-letter-d

85

Replace Lottie with Rive The Ultimate Guide to React Native Optimization

There are other factors around performance associated with
Lottie which we will discuss in the next section.

SOLUTION: LEVERAGE DEVELOPER-FRIENDLY TOOLS
WHICH OFFER BETTER FPS WITH LESS FILE SIZE.

There's a new tool in town called Rive. It aims to be an alterna-
tive to Lottie by providing everything Lottie does and then some.
It also ships a web editor to customize real-time animations on
the go. The editor allows the user to build interactive animations
which have the capability to interact based on the inputs provid-
ed by the user. Having trigger-based animations is a great win,
especially for mobile platforms.

Remember the approach we took for the onboarding steps anima-
tions? Now if we use Rive animations, we can leverage its state
machine, triggers, and user inputs to use a single animation file
for our onboarding steps. It really helps in improving the developer
experience and the cherry on top: the size of the animation file is
very small compared to Lottie JSON. We also don't have to keep
different files for each onboarding step; hence saving some KBs
for the bundle as well.

import React, { useRef } from 'react';
import { Button, SafeAreaView, StyleSheet } from 'react-
native';
import Rive, { RiveRef } from 'rive-react-native';

const stateMachineOne = 'State Machine 1';

const App = () => {
 const riveRef = useRef<RiveRef>(null);
 const isRunning = useRef(false);

 const onIsRunning = () => {
 isRunning.current = !isRunning.current;
 riveRef.current?.setInputState(
 stateMachineOne,
 'isRunning',
 isRunning.current,
);
 };

https://help.rive.app/runtimes/overview/react-native

86

Replace Lottie with Rive The Ultimate Guide to React Native Optimization

As we see, adding complex animation is developer-friendly. We
can also add triggers or input-based animations quickly. All we
need is the information regarding the state machine, inputs, and
triggers. If we have an animator who built a beautiful animation
for our project on Rive Editor, we can ask them to pass along
the info. Otherwise, we can always look up this info in the web
editor ourselves.

Now let's talk about performance in terms of FPS, CPU, and mem-
ory consumption. We will do a comparison of an animation that is
built for Lottie with the same animation built for Rive. This tweet
shows benchmarks done for the web platform. We'll extend this
by using the same animations for Rive and Lottie on our React
Native app.

 const onSideKick = () => {
 riveRef.current?.fireState(stateMachineOne, 'sideKick');
 };

 return (
 <SafeAreaView>
 <Rive
 ref={riveRef}
 resourceName=''character''
 style={styles.character}
 stateMachineName={stateMachineOne}
 autoplay
 />
 <Button title=''Is Running'' onPress={onIsRunning} />
 <Button title=''SideKick'' onPress={onSideKick}
color=''#3e3e3e'' />
 </SafeAreaView>
);
};

export default App;

const styles = StyleSheet.create({
 character: {
 width: 400,
 height: 400,
 },
});

https://rive.app/editor
https://twitter.com/guidorosso/status/1580267624050532352
https://public.rive.app/hosted/40846/11373/jb-r1m2WqEyusZFM4ClF_A.riv
https://assets7.lottiefiles.com/packages/lf20_l3qxn9jy.json

87

Replace Lottie with Rive The Ultimate Guide to React Native Optimization

Lottie

Lottie playing our animation at roughly17 FPS both on JS and UI threads

Rive

Rive playing our animation at roughly 60 FPS both on JS and UI threads

We benchmarked this on a Sony Xperia Z3 model using an Android
profiler and Perf monitor that is shipped with the React Native app.
We disabled the DEV mode so that our JS thread doesn't throttle
because of it.

Both images show a tiny window right above the rocket with
details of FPS on both the UI and JS thread. The results show

https://reactnative.dev/docs/performance#running-in-development-mode-devtrue

88

Replace Lottie with Rive The Ultimate Guide to React Native Optimization

that the Rive animation runs almost at 60FPS whereas Lottie runs
at 17FPS.

Now let's focus on the right part of both images, which is the Memory
consumption detailed view. If we look closely, there are main-
ly three portions: Java, Native, and Graphics. Java represents
the memory allocated for Java or Kotlin code. The Native rep-
resents the memory allocated from C or C++ code. The graphics
represent the memory used for the graphics buffer queues to dis-
play pixels on the screen. In Java, Lottie uses almost 23 MB and
Rive uses almost 12 MB of RAM. In Native, Lottie uses 49 MB and
Rive uses 25 MB of RAM. In Graphics, Lottie consumes 123 MB,
whereas Rive uses 184 MB of RAM. The total memory consump-
tion of Lottie is 246 MB and Rive is 276 MB.

The results show that Rive outperforms Lottie in all departments
except Graphics. The end user expects the app to run at 60FPS
to enjoy a smooth user experience. If one has to do a trade-off
between memory consumption and FPS, they might go with FPS
as most of the devices have enough memory to exercise the app's
needs.

BENEFITS: A REDUCED REGRESSION CYCLE WHILE
DEVELOPING A FEATURE AND A HAPPY USER BASE

If we opt-in to a world without state machines, the developers will
be implementing the logic in their code. And each time there is
a change in the interactivity of the animation, devs will be required
to re-work their code. This is not a good developer experience.

Rive's state machines give designers the power to think as if they
were coding and structure the state machine for an animation

89

Replace Lottie with Rive The Ultimate Guide to React Native Optimization

that will interact after being given a certain input. Now the devel-
oper can use that animation and implement the interactivity firing
the inputs on the animation and be done with it. If this animation
needs to be changed with the same inputs, the dev only needs to
replace the animation source and that's it. More info here.

Almost 18.7% of people uninstall the app due to storage issues.
This hurts the company's ROI. Developers should always pay at-
tention to reducing the bundle size and the storage utilized by
their app. In a tweet by Rive's CEO, the Lottie file was around 24.37
KB and the same Rive file was around 2 KB. At the end of the day,
each KB saved adds up to a reduced app size. We always want
to choose a library that best fulfills our needs by providing a bet-
ter developer experience, ease of API, and a smooth experience
for the end user.

https://rive.app/blog/state-machines-make-iteration-a-breeze-for-designers-and-developers
https://clevertap.com/blog/uninstall-apps/
https://twitter.com/guidorosso/status/1579607142382055425

The Ultimate Guide to React Native Optimization

DRAW EFFICIENTLY ON
A CANVAS WITH SKIA

PART 1 | CHAPTER 8

91

Draw efficiently on a canvas with skia The Ultimate Guide to React Native Optimization

PO or design team may have the uncompromised vision of the prod-
uct design or have in mind some specific features that may be dif-
ficult to build with Rive/react-native-reanimated without sacrific-
ing performance or cross platform issues. Maybe there's an idea
to adopt some design trend? Maybe the app will be graphs-heavy
or will have a graphic-rich dashboard? Or maybe there's a plan to
have a screen with performant and beautiful image transitions?

Component's shadow rendering approach is different in iOS and
android, masking may be rather slow on android, limited blur sup-
port on android.

While being easy to use and performant tool, Rive also has some
constraints like limited Blur, Glow, Shadow support and limited
path effects.

So at the time this kind of issue is encountered you will most
likely have in mind an exact picture you want to see in your app.
And with the requirements that precise you will require the tool
that can give you maximum control over the rendering pipeline.

SOLUTION: MAYBE IT'S TIME TO CHECKOUT SKIA

Skia is an open source 2D graphics library which provides com-
mon APIs that work across a variety of hardware and software
platforms. It serves as the graphics engine for Google Chrome
and ChromeOS, Android, Flutter, Mozilla Firefox and Firefox OS,
and many other products.

Thanks to Shopify, React Native developers have access to declarative
Skia drawing capabilities using the @shopify/react-native-skia
library. With it we can get full control over the rendering, down to

ISSUE: CORE APPLICATION DESIGN
IDEA IS DIFFICULT TO IMPLEMENT WITH
THE TRADITIONAL APPROACHES

https://github.com/Shopify/react-native-skia

92

Draw efficiently on a canvas with skia The Ultimate Guide to React Native Optimization

the pixels. It's a powerful instrument to cover almost any case you
can imagine with the great performance overall.

React Native Skia's API uses the <Canvas /> element that will be
the last '’’'native'' element in the app's view tree and will serve as
a root of your Skia drawing. All react-native-skia child components
that will be put into it will serve as a declarative api for the library.
Behind the scenes it'll use its own React renderer.

Here's an example of how @shopify/react-native-skia can
be used, rendering two circles on the fixed size Canvas and blend
them together.

import React from ''react'';
import { useWindowDimensions } from 'react-native';
import { Canvas, Circle, Group, vec } from ''@shopify/react-
native-skia'';

const App = () => {
 const {width, height} = useWindowDimensions();
 const c = vec(width / 2, height / 2);
 const r = width * 0.33;
 return (
 <Canvas style={{ width, height }}>
 <Group blendMode=''multiply''>
 <Circle cx={r} cy={c.y} r={r} color=''cyan'' />
 <Circle cx={width - r} cy={c.y} r={r}
color=''magenta'' />
 </Group>
 </Canvas>
);
};

https://github.com/Shopify/react-native-skia

93

Draw efficiently on a canvas with skia The Ultimate Guide to React Native Optimization

From this example we also can see one of the core elements of
the API – the <Group /> component. Groups can be deeply nest-
ed and can apply operations to their children:
•	 Paint properties – pretty similar to svg the properties applied

to the group (ex. style, color) will be inherited by the child
elements.

•	 Transformations – almost identical to React Native trans-
form property with one significant difference: in React Native,
the origin of transformation is the center of the object, whereas
it is the top-left position of the object in Skia.

•	 Clipping – clip property provides the region in which children
elements will be shown while outside region's pert will be hid-
den. It can be reverted invertClip property.

•	 Bitmap effects – layer property will create bitmap drawing of
the children which you can for example use to build effects
that need to be applied to the group of elements.

94

Draw efficiently on a canvas with skia The Ultimate Guide to React Native Optimization

To make one of the circles move we can use Reanimated:

import React from ''react'';
import { useWindowDimensions } from 'react-native';
import { Canvas, Circle, Group, vec } from ''@shopify/react-
native-skia'';
import {
 Easing,
 cancelAnimation,
 useSharedValue,
 withRepeat,
 withTiming,
} from ''react-native-reanimated'';

export const useLoop = ({ duration }) => {
 const progress = useSharedValue(0);
 useEffect(() => {
 progress.value = withRepeat(
 withTiming(1, { duration, easing: Easing.inOut(Easing.
ease) }),
 -1,
 true
);
 return () => {
 cancelAnimation(progress);
 };
 }, [duration, progress]);
 return progress;
};

const App = () => {
 const ANIMATION_OFFSET = 50;
 const {width, height} = useWindowDimensions();
 const c = vec(width / 2, height / 2);
 const r = width * 0.33;
 const progress = useLoop({duration: 2000});
 const circleTranslate = useDerivedValue(
 () => mix(progress.value, c.y + ANIMATION_OFFSET, c.y -
ANIMATION_OFFSET),
 [progress],
);
 return (
 <Canvas style={{ width, height }}>
 <Group>

95

Draw efficiently on a canvas with skia The Ultimate Guide to React Native Optimization

As you might have noticed, React Native Skia can directly accept
Reanimated values as props, making it seamless to integrate can-
vas drawings with animations that delight your users.

One major thing to notice is that <Canvas /> is transparent
by default so it will be a nice baseline to use it for some fancy
looking custom components. Here we'll add a <View /> with
the red square in the middle which will be rendered underneath
the <Canvas />

 <Circle cx={r} cy={c.y} r={r} color=''cyan'' />
 <Circle cx={width - r} cy={circleTranslate} r={r}
color=''magenta'' />
 </Group>
 </Canvas>
);
};

const App = () => {
 const ANIMATION_OFFSET = 50;
 const {width, height} = useWindowDimensions();
 const c = vec(width / 2, height / 2);
 const r = width * 0.33;
 const progress = useLoop({duration: 2000});
 const circleTranslate = useDerivedValue(
 () => mix(progress.value, c.y + ANIMATION_OFFSET, c.y -
ANIMATION_OFFSET),
 [progress],
);
 return (
 <>
 <View
 style={{
 alignItems: 'center',
 justifyContent: 'center',
 ...StyleSheet.absoluteFill,
 }}>
 <View style={{height: 300, width: 300,
backgroundColor: 'red'}} />
 </View>
 <Canvas style={{flex: 1}}>

96

Draw efficiently on a canvas with skia The Ultimate Guide to React Native Optimization

The thing to remember is that if you are using the <Canvas /> to
apply the effect that will need to affect the underlying layer these
changes will only be applied to the <Canvas /> elements. Things
like <Shadow /> will be rendered correctly but <Blur /> will
only have the data about the elements that are used inside can-
vas. You will need to somehow capture the snapshot of the layer.

For that the makeImageFromView function exists. You can call
it with the ref to the <View /> you want the snapshot of and it
will return you a Promise with the image data that you can use as
a canvas layer for transformation.

So if we add a blurred card to our component you will see
the blur only around the circles and the red square we've added
in the last example will look as sharp as always. To fix that we'll
take a snapshot of the underlying view and refer it as an image
on the <Canvas /> .

 <Group>
 <Circle cx={r} cy={c.y} r={r} color=''cyan'' />
 <Circle cx={width - r} cy={circleTranslate} r={r}
color=''magenta'' />
 </Group>
 </Canvas>
 </>
);
};

const pd = PixelRatio.get();
const App = () => {
 const {width, height} = useWindowDimensions();
 const c = vec(width / 2, height / 2);
 const r = width * 0.33;
 const CARD_WIDTH = width - 60;
 const CARD_HEIGHT = CARD_WIDTH * 0.5;
 const ANIMATION_OFFSET = 50;
 const clip = useMemo(
 () => rrect(rect(0, 0, CARD_WIDTH, CARD_HEIGHT), 20, 20),
 [CARD_HEIGHT, CARD_WIDTH],
);
 const ref = useRef<View>(null);

97

Draw efficiently on a canvas with skia The Ultimate Guide to React Native Optimization

 const progress = useLoop({duration: 2000});
 const x = useSharedValue((width - CARD_WIDTH) / 2);
 const y = useSharedValue((height - CARD_HEIGHT) / 2);
 const transform = useDerivedValue(() => [
 {translateY: y.value},
 {translateX: x.value},
]);
 const circleTranslate = useDerivedValue(
 () => mix(progress.value, c.y + ANIMATION_OFFSET, c.y -
ANIMATION_OFFSET),
 [progress],
);
 const [image, setImage] = useState<SkImage | null>(null);

 useEffect(() => {
 makeImageFromView(ref).then(snapshot =>
setImage(snapshot));
 }, []);

 return (
 <>
 <View
 ref={ref}
 collapsable={false}
 style={{
 alignItems: 'center',
 justifyContent: 'center',
 ...StyleSheet.absoluteFill,
 }}>
 <View style={{height: 300, width: 300,
backgroundColor: 'red'}} />
 </View>
 <Canvas style={{flex: 1}}>
 <Image
 image={image}
 x={0}
 y={0}
 height={(image?.height() || 0) / pd}
 width={(image?.width() || 0) / pd}
 />
 <Group>
 <Circle cx={r} cy={c.y} r={r} color=''cyan'' />
 <Circle cx={width - r} cy={circleTranslate} r={r}
color=''magenta'' />

98

Draw efficiently on a canvas with skia The Ultimate Guide to React Native Optimization

This approach can help you to create nicely looking cross-plat-
form overlays on top of your main application content but need
to be planned in advance since you need to have a ref to the un-
derlying view.

Another thing react-native-skia is great at is path interpolation.
The calculations are performed on the native side with C++ so it's
blazingly fast, does not lock the JS thread, and hence will keep
the UI responsive to user actions.

 </Group>
 <BackdropBlur blur={20} transform={transform}
clip={clip}>
 <Fill color=''rgba(0, 0, 0, 0.3)'' />
 </BackdropBlur>
 </Canvas>
 </>
);
};

99

Draw efficiently on a canvas with skia The Ultimate Guide to React Native Optimization

In this simple example we'll use the d3 library to generate two
curved paths from the data that we'll then render on the canvas
and animate the switch between them.

import React, {useEffect} from 'react';
import {useSharedValue, withRepeat, withTiming} from 'react-
native-reanimated';
import {
 Skia,
 usePathInterpolation,
 Canvas,
 Path,
} from '@shopify/react-native-skia';
import {curveBasis, line, scaleLinear, scaleTime} from 'd3';
const GRAPH_HEIGHT = 500;
const GRAPH_WIDTH = 350;
export const data1 = [
 {date: '2023-12-01T00:00:00.000Z', value: 110},
 …
 {date: '2023-12-15T00:00:00.000Z', value: 700},
];
export const data2 = [
 {date: '2023-12-01T00:00:00.000Z', value: 700},
 …
 {date: '2023-12-15T00:00:00.000Z', value: 400},
];
const makeGraph = data => {
 const max = Math.max(...data.map(val => val.value));
 const y = scaleLinear().domain([0, max]).range([GRAPH_
HEIGHT, 35]);
 const x = scaleTime()
 .domain([new Date(2023, 12, 1), new Date(2023, 12, 15)])
 .range([10, GRAPH_WIDTH - 10]);
 const curvedPath = line()
 .x(d => x(new Date(d.date)))
 .y(d => y(d.value))
 .curve(curveBasis)(data);
 return Skia.Path.MakeFromSVGString(curvedPath!);
};
const App = () => {
 const progress = useSharedValue(0);
 const graphData = [makeGraph(data1), makeGraph(data2)];
 useEffect(() => {
 progress.value = withRepeat(withTiming(1, {duration:

100

Draw efficiently on a canvas with skia The Ultimate Guide to React Native Optimization

The usePathInterpolation hook will take care of the correct
interpolation of the path value when switching the graphs. For
the animation to look smooth, the path needs to be interpolatable

1000}), -1, true);
 }, [progress]);
 const path = usePathInterpolation(
 progress,
 [0, 1],
 [graphData[0], graphData[1]],
);
 return (
 <Canvas style={{flex: 1}}>
 <Path
 path={path}
 style=''stroke''
 strokeWidth={5}
 strokeCap=''round''
 strokeJoin=''round''
 />
 </Canvas>
);
};

101

Draw efficiently on a canvas with skia The Ultimate Guide to React Native Optimization

and contain the same number and types of commands or the in-
terpolation may potentially look incorrect or can cause the crash
of your app.

BENEFITS: ACCESS TO THE POWERFUL TOOL THAT WILL
HELP YOU CREATE UNIQUE AND PERFORMANT UI

Close to native performance, high customizability and great API
will help you a lot if your goal is to create something creative and
fast. Add to that good integration with the current generation of
tools like react-native-gesture-handler and react-native-reani-
mated and you'll get yourself a fantastic instrument to have when
a new UI design trend pops up.

We only covered a fraction of things react-native-skia can do.
Things like image processing filters, masking, rich text render and
all powerful shaders are out of our scope of this guide.

The best places to learn more about React Native Skia and possible
applications will be the official documentation, William Candillon's
YouTube channel, and Daniel Friyia's YouTube channel.

”In 2023, we made a strategic decision to rely
completely on Reanimated for animations.

This move has brought several benefits.
Firstly, it's the React Native animation system

that people are already proficient with,
which streamlines the learning curve. It enables

us to animate native views and Skia drawings
simultaneously and integrates seamlessly

with react-native-gesture-handler. Now, we're
taking our integration with Reanimated further

by providing new APIs. These APIs allow for
the creation of textures directly on the UI thread
and enable the animation of large scenes based

on these textures.”

William Candillon

https://shopify.github.io/react-native-skia/
https://www.youtube.com/@wcandillon
https://www.youtube.com/@DanRNLab

The Ultimate Guide to React Native Optimization

OPTIMIZE YOUR APP’S
JAVASCRIPT BUNDLE

PART 1 | CHAPTER 9

103

Optimize your app’s JavaScript bundle The Ultimate Guide to React Native Optimization

React Native application’s logic is mostly located in the JavaScript
code which runs in the JavaScript engine (JavaScriptCore or
Hermes). But before loading JavaScript code into the app, it
should be bundled, usually into a single JS file or sometimes to
multiple files. React Native provides a built-in tool for JavaScript
code bundling called Metro.

SOLUTION: USE EXTERNAL PLUGINS OR SWAP
IT WITH THIRD-PARTY BUNDLERS.

Like any bundler, Metro takes in an entry file and various options
and gives you back a single JavaScript file that includes all your
code and its dependencies, also known as a JavaScript bundle.
According to official docs, Metro speeds up builds using a local
cache of transformed modules out of the box. Metro trades con-
figurability for performance, whereas other bundlers like Webpack
are the other way around. So when your project needs custom
loaders or the extensive Webpack configurability for bundling
JavaScript code and splitting app logic, there are a few alterna-
tive bundlers that could be used in React Native apps and provide
more configuration features. Each of them have some benefits
and limitations.

Re.Pack

Re.Pack is a Webpack-based toolkit to build your React Native
application with full support of the Webpack ecosystem of load-
ers, plugins, and support for various features like symlinks, aliases,
code splitting, etc. Re.Pack is the successor to Haul, which served
a similar purpose but balanced a different set of tradeoffs and
developer experience.

ISSUE: METRO, THE DEFAULT JS
BUNDLER FOR REACT NATIVE, PRODUCES
A BUNDLE THAT’S TOO LARGE.

https://facebook.github.io/metro
https://webpack.js.org/
https://re-pack.netlify.app/

104

Optimize your app’s JavaScript bundle The Ultimate Guide to React Native Optimization

The ecosystem part of Webpack is crucial for many developers,
since it’s the most popular bundler of the web, making the com-
munity behind loaders and plugins its key advantage. Thanks
to that pluggability, it provides ways to improve the build pro-
cess and Webpack’s overall performance. At least for the parts
that are not connected to the internal module graph building and
processing. Such parts would be, e.g. JavaScript and TypeScript
transpilation or code minification. You can replace Babel transpiler
and Terser minifier with faster alternatives like ESBuild thanks to
the esbuild-loader or swc with swc-loader.

Another Webpack feature that helps our apps achieve better per-
formance is reducing the amount of code in the final bundle with
tree shaking. Tree shaking is a dead code elimination technique
done by analyzing the import and export statements in the source
code and determining which code is actually used by the appli-
cation. Webpack will then remove any unused code from the fi-
nal bundle, resulting in a smaller and more efficient application.
The code that’s eligible for tree shaking needs to be written in
ECMAScript modules (import and export statements) and mark itself
as side-effect free through package.json sideEffects: false
clause.

Webpack has support for symlinks but since React Native 0.72,
Metro offers that as well in an experimental form. And since v0.73
it’s turned on by default. Symlinks prove useful inside of monore-
pos, where node modules can be optimally shared between dif-
ferent workspaces.

Re.Pack also offers the ability to use asynchronous chunks to split
your bundle into multiple files and load them on-demand, which can
improve initial loading times if you’re using the JavaScriptCore en-
gine. However, it won’t provide that much value when used with
Hermes, which leverages the memory mapping technique for dy-
namic reading only the necessary parts of the bundle’s bytecode
directly from the RAM. It might make a slight difference when your
app’s bundle is really big, and you are targeting low-end Android
devices. But there’s a twist to that! Webpack doesn’t really care
whether you load the dynamic chunk from the filesystem or re-
mote. Hence it allows for dynamic loading code that’s never been
there in the app bundle in the first place – either directly from

https://esbuild.github.io/
https://esbuild.github.io/
https://swc.rs/docs/usage/swc-loader
https://github.com/webpack/webpack/blob/main/examples/side-effects/README.md

105

Optimize your app’s JavaScript bundle The Ultimate Guide to React Native Optimization

a remote server or a CDN. Now this can help you with reducing
not only the initial load time, but also the precious app size. It also
opens up a way to Over-The-Air (OTA) updates that target only
a small part of your app.

On top of that, Webpack 5 introduced support for the concept of
Module Federation. It’s a functionality that allows for code-splitting
and sharing the split code parts (or chunks) between independent
applications. It also helps distributed and independent teams to
ship large applications faster. Giving them the freedom to choose
any UI framework they like and deploy independently, while still
sharing the same build infrastructure. Re.Pack 3 supports this
functionality out-of-the-box and provides you with a lot of util-
ities that prove useful in such scenarios e.g. CodeSigningPlugin
can help you with integrity verification of remotely loaded bundles.

All these configurations and flexibility affect the build process.
The build speed is a little bit longer than the default Metro bun-
dler due to customization options. When switching from Metro, it
might require you to solve some resolution errors, as the algo-
rithms differ between the two bundlers. Also, the Fast Refresh
functionality is limited compared to the Metro bundler. The Hot
Module Replacement (HMR) and React Refresh features might
sometimes require the full application reload with Webpack and
Re.Pack. When working with Module Federation, the HMR func-
tionality is also limited to refreshing parts of the app originating
from the host. For the remote modules a full reload is required.

If you don’t need the huge customization that the Webpack eco-
system offers or don’t plan to split your app code, then you may
as well keep the default Metro bundler.

react-native-esbuild

One of the main benefits of react-native-esbuild is fast builds.
It uses the ESBuild bundler under the hood which has huge im-
provements in bundling performance even without caching. It also
provides some features like tree shaking and is much more con-
figurable compared to the Metro bundler. ESBuild has its own
ecosystem with plugins, custom transformers, and env variables.
This loader is enabled by default for .ts , .tsx , .mts , and

https://github.com/oblador/react-native-esbuild
https://esbuild.github.io/

106

Optimize your app’s JavaScript bundle The Ultimate Guide to React Native Optimization

.cts files, which means ESBuild has built-in support for parsing
TypeScript syntax and discarding the type annotations. However,
ESBuild does not do any type checking so you will still need to
run type check in parallel with ESBuild to check types. This is not
something ESBuild does itself.

Unfortunately, react-native-esbuild has some tradeoffs, so
it is very important to select the right bundler by paying attention
to them as well.

It doesn’t support Hermes, which is now the default engine for
React Native. And it does not have Fast Refresh or Hot Module
Replacement, but this library supports live reload instead.

rnx-kit

An interesting extension to Metro is Microsoft’s rnx-kit. It is
a package with a huge variety of React Native development tools.
Historically, it enabled the use of symlinks with Metro, before it was
officially supported. Another benefit compared to Metro is the tree
shaking functionality out-of-the-box, through the use of ESBuild
for bundling

Metro supports TypeScript source files, but it only transpiles them to
JavaScript. Metro does not do any type-checking. rnx-kit solves this
problem. Through the configuration, you can enable type-checking.
Warnings and errors from TypeScript appear in the console.

Also, rnx-kit provides duplicate dependencies and cyclic depen-
dencies detection out-of-the-box. This could be very useful to re-
duce the size of the bundle which leads to better performance and
prevents cyclic dependencies issues. Note that you will have to
solve these issues yourself, but thankfully rnx-kit documentation
provides some insights on how to deal with them.

BENEFITS: SHIP LESS JAVASCRIPT TO YOUR USERS.
SAVE DEVELOPERS’ TIME WHEN BUNDLING.

The choice of a bundle tool depends on the specific case. It is im-
possible to select only one bundler for all the apps.

https://microsoft.github.io/rnx-kit/

107

Optimize your app’s JavaScript bundle The Ultimate Guide to React Native Optimization

As you can see, tree-shaking in React Native can be achieved
through use of Webpack (via Re.Pack) or ESBuild (via rnx-kit or
react-native-esbuild). Tree-shaking implementation differs be-
tween bundlers, so it might be feasible to check the results of both
and determine what’s best for your app. Note that tree-shaking
through rnx-kit is still in beta, but the results are optimistic so far.
It’s reasonable to expect the bundle size difference between 0%
and 20%, and in rare cases, even more than that.

Should you feel a need for customization options provided by
the Webpack ecosystem or plan to split your app code, then we
would suggest using Re.Pack for its widely customizable configu-
ration, a huge amount of loaders, plugins maintained by the com-
munity. If the Webpack ecosystem feels like an overhead, then it
is better to stay with the default Metro bundler or try to use other
bundler options like react-native-esbuild and rnx-kit which also
provides some benefits like decreased build time, using esbuild
under the hood, symlinks, and typescript support out-of-the-box.
But be careful and always pay attention to the tradeoffs that come
with a new bundling system.

IF YOU NEED HELP WITH
PERFORMANCE, STABILITY, USER
EXPERIENCE, OR OTHER COMPLEX
ISSUES – CONTACT US!
As React Native Core Contributors and leaders of the com-
munity, we will be happy to help.

https://www.callstack.com/contact-us?utm_campaign=RN_Performance&utm_source=guide&utm_content=guide_contact_2

The Ultimate Guide to React Native Optimization

Last year, developers contributed more than 3670 commits to
the React Native core. The number may seem impressive, but,
in fact, it's even larger, since it doesn't include the smaller con-
tributions made under the React Native Community organization
(9678 commits).

All that proves that React Native is developing at a really healthy
pace. Contributions made by both the community and Meta enable
more and more advanced use cases of the framework. A great
example of that is Hermes – an entirely new JavaScript engine
built and designed specifically for React Native and Android.
Hermes aims to replace the JavaScriptCore, previously used on
both Android and iOS. It also brings a lot of enterprise-grade op-
timizations by improving your Android application's performance,
start-up time, and overall size reduction.

In this section, we will show you some of the features you can
turn on right now to start your optimization process. We also en-
courage you to keep track of all the new React Native features to
make sure you use the framework to its full potential.

IMPROVE PERFORMANCE BY USING
THE LATEST REACT NATIVE FEATURES.
React Native is growing fast and so is the number of features

PART 2

The Ultimate Guide to React Native Optimization

ALWAYS RUN THE LATEST
REACT NATIVE VERSION TO
ACCESS THE NEW FEATURES

PART 2 | CHAPTER 1

110

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

ISSUE: YOU ARE RUNNING AN OLD AND UNSUPPORTED
VERSION OF REACT NATIVE AND DEPRIVING YOURSELF
OF NEW IMPROVEMENTS AND FEATURES

Keeping your application up to speed with the frameworks you use
is crucial. That is why you should subscribe to the latest features,
performance improvements, and security fixes.

The JavaScript ecosystem is particularly interesting in this aspect,
as it moves really quickly. If you don't update your app regularly,
chances are your code will end up being so far behind that up-
grading it will become painful and risky.

Every day, developers from all around the world introduce new
features, critical bug fixes, and security patches. On average, each
release includes around 500 commits.

Over the years, React Native has grown significantly, thanks to
open – source contributors and Meta's dedication to improv-
ing the ecosystem. Here are some highlighted crucial features
that have been introduced to React Native over the course of its
releases.

FAST REFRESH

To improve the developer experience and velocity, the React team
introduced a feature called Fast Refresh to React Native. This lets
you quickly reflect the code on the device, whenever you save
the file instead of building or reloading the app. It is smart enough

UPGRADE YOUR APP TO THE LATEST
VERSION TO GET MORE FEATURES
AND BETTER SUPPORT.

111

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

to decide when to do a reload after we fix an error or just render
otherwise.

A tip here: the local state of functional components and hooks is
pre – served by default. We can override this by adding a comment
to that file: // @refresh reset . Whereas, class components
are remounted without preserving the state.

AUTO-LINKING

Whenever we add native code to our React Native app as a depen-
dency, it needs to be linked. Previously linking was done manually
or using react-native link dep-name. React Native CLI introduced
auto-linking so the devs didn't need to link a library themselves.
After a couple of years, when the re-architecture of React Native
was released to the community, a need arose to auto link fabric
components and turbo modules, which was handled gracefully by
the CLI team. They released an update to the community to help
the developer experience and velocity.

FLIPPER

Important note: Debugging React Native apps with Flipper is dep-
recated in React Native 0.73. The out-of-the box support will
eventually be removed for JS debugging via Flipper in 0.74.

It is one of the ways of debugging React Native apps. It is loaded
with awesome tools such as ReactDevtools, Network Inspector,
Native Layout Inspector, and plugins for e.g. to measure the per-
formance of the React Native apps. We can also view the Metro
and Device logs right in Flipper.

NEW DEBUGGING EXPERIENCE

In v0.73, React Native introduced a new debugger natively sup-
ported by Hermes and supporting Chrome Debugging Protocol
(CDP). The dev menu is now updated with one-click action to
the complete new first party debugger which replaces Flipper.
This workflow is zero install and works if you have Google Chrome,

112

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

Microsoft Edge or any Chromium-based browser installed on your
system. The new debugger can be also triggered from React
Native CLI by using the “J” hotkey. The frontend of the new de-
bugging system in RN is based on Chrome Dev Tools and features
a customized UI with panels and menus that match debugging
features that React Native supports today, nothing more than that,
so what you see works. Since the debugger is based on Chrome
Dev tools it has future capability to support rich and comprehen-
sive debugging features offered by the web ecosystem.

Note: Please be aware that at the time of writing,
the feature is still in the experimental phase. The React
Native team is ironing out the bugs and making sure
that, when the debugger launches fully, it will work more
completely than the current debugging methods.

You can opt-in to the new debugger using the start 's com-
mand --experimental-debugger flag:

npx react-native start --experimental-debugger

113

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

Now it's just a case of hitting the j key and this will launch the new
debugger using Google Chrome or Microsoft Edge.

EXPO DEV TOOLS PLUGINS

For apps using Expo tools, you can already use and write plugins
that leverage the Chrome Debugging Protocol introduced in React
Native 0.73. Expo's Dev tool plugins are an extensible way of de-
bugging your Expo and React Native apps. These plugins are avail-
able as small dependencies that can be installed in your app. They
allow developers to inspect various aspects of their app, trigger
test behaviors, and much more, all in real time.

Dev tools plugins are snippets that create a bridge between your
app and Chrome window. These bridges open up a world of pos-
sibilities for app inspection and debugging, making the process
both simpler and more efficient.

Available plugins

While this is a relatively new feature, Expo already has some built-
in dev tool plugins that are already available to use:
•	 React Navigation Plugin: Ideal for apps utilizing React Navigation

or Expo Router, allows rewinding navigation history and even
sending deep links.

•	 Apollo Client Plugin: Useful for apps using Apollo Client, pro-
viding insights into query and mutation history, and cache
management.

114

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

•	 React Query Plugin: Useful for apps using TanStack Query to
explore data and queries, check cache status, and manage
queries.

•	 TinyBase Plugin: Connects the TinyBase Store Inspector to your
app, allowing for real-time store content viewing and updating.

More dev tools plugins are expected to be added over time. To
see a complete list, see this GitHub repository.

Integrating a plugin

Integrating a plugin into your Expo or React Native app is straight-
forward. For example, let's assume you use a navigation library
in your app, such as Expo Router or React Navigation. You can
use @dev-plugins/react-navigation to see the history of React
Navigation actions and state. It also allows rewinding to a previ-
ous point in the navigation history and even test sending deep
links to your app.

To use this plugin, install the package:

After installation, add the necessary code snippet to your app's root
component. This setup ensures seamless two-way communication
between your app and the plugin, enriching your development and
debugging process.

In this example, we'll pass the navigation root to the plugin in our
app's entry point when running in development mode when using
React Navigation:

import { NavigationContainer, useNavigationContainerRef } from
'@react-navigation/native';
import { useReactNavigationDevTools } from '@dev-plugins/
react-navigation';

export default function App() {
 const navigationRef = useNavigationContainerRef();

npx expo install @dev-plugins/react-navigation

https://github.com/expo/dev-plugins

115

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

You can also use the same plugin when you navigate with Expo
Router since it also uses React Navigation under the hood. However,
the setup is slightly different:

Once these code changes are applied, open your terminal, run
npx expo start, press shift + m to open the list of dev tools, and
then select the React Navigation plugin. This will open the plugin's
web interface, showing your navigation history as you navigate
through your app.

 useReactNavigationDevTools(navigationRef);

return (
 <NavigationContainer ref={navigationRef}>{/* ... */}</
NavigationContainer>
);
}

import { useRef } from 'react';
import { useNavigationContainerRef, Slot } from 'expo-router';
import { useReactNavigationDevTools } from '@dev-plugins/
react-navigation';

export default Layout() {
 const navigationRef = useNavigationContainerRef();
 useReactNavigationDevTools(navigationRef);

 return <Slot />;
}

116

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

If you haven't found a plugin to fit your use case yet, you can also
build your own.

LOGBOX

React Native redesigned its error and warning handling system.
They had to do a ground-up redesign of its logging system and
the developer experience is much better because of it. Developers
can easily trace the cause of an error using code frames and
component stacks. Syntax error formatting helps to understand
the issue more quickly with the aid of syntax highlighting. Log
Notifications show warnings and logs at the bottom of the screen
instead of covering the whole screen.

HERMES

A new JS engine created by Meta to improve the performance
of React Native apps in terms of CPU usage, memory consump-
tion, app size, and Time To Interactive (TTI). Initial support was
launched for Android devices, but after two years, support was
extended to iOS as well. After a couple of months, the previous-
ly used garbage collector for Hermes GenGC was replaced with
a new one called Hades – a concurrent garbage collector. The
Meta team saw improvements of CPU-intensive workloads by
20-50%. Later on, the team decided to ship a bundled Hermes

https://docs.expo.dev/debugging/create-devtools-plugins/
https://reactnative.dev/blog/2021/08/17/version-065#whats-new-in-hermes-08

117

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

instead of downloading it from NPM. This was done to avoid con-
fusion between what version of Hermes is compatible with React
Native. Also, both Hermes and React Native use the same JSI
code which makes it hard to maintain. Now whenever a version
of React Native is released, a version of Hermes can be released
as well, making sure that both are fully compatible.

NEW ARCHITECTURE

This one has its own chapter.

In the React Native ecosystem, it's common that libraries are not
backward – compatible. New features often use goodies not avail-
able in the previous versions of the framework. This means that if
your application runs on an older version of React Native, you are
eventually going to start missing out on the latest improvements.

That's why keeping up with the newest React Native upgrades is
the only way to go.

118

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

Unfortunately, there is some serious work associated with upgrad-
ing your React Native code with every new release. Its amount will
depend on the number of underlying changes to the native func-
tionalities and core pieces. Most of the time, you have to carefully
analyze and compare your project against the latest version and
make the adjustments on your own. This task is easier if you're
already comfortable with moving around the native environment.
But if you're like most of us, it might be a bit more challenging.

For instance, it may turn out that the modules and components
you used in your code are no longer part of the react-native core.

It would be because of the changes introduced by Meta during
a process called the LEAN CORE link. The goals of the effort were
to:
•	 Make the react-native package smaller, more flexible, and eas-

ier to maintain by extracting some parts of the core and moving
them to the react-native-community repository,

•	 Transfer the maintenance of the extracted modules to
the community.

The process accelerated the growth of particular modules and
made the whole ecosystem better organized. But it also had some
negative effects on the react-native upgrading experience. Now,
you have to install the extracted packages as an additional de-
pendency, and until you do, your app will not compile or crash at
runtime.

However, from a developer's perspective, the migration to com-
munity packages is usually nothing more than introducing a new
dependency and rewriting imports.

Another important issue is the support of third-parties. Your code
usually relies on external libraries and there's a risk that they might
also be incompatible with the latest React Native version.

There are at least two ways to solve this problem:
•	 Wait for the project maintainers to perform the necessary ad-

justments before you upgrade.

https://github.com/facebook/react-native/issues/23313

119

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

•	 Look for alternatives or patch the modules yourself – by using
a handy utility called patch-package or creating a temporary
fork with the necessary fixes.

RUNNING ON AN OLD VERSION MEANS SHIPPING WITH
ISSUES THAT MAY DISCOURAGE YOUR USERS

If you are running on an older version, it is likely that you are
lagging behind your competition that uses the latest versions of
the framework.

The number of fixes, improvements, and advancements in the React
Native framework is really impressive. If you're playing a game
of catch up, you are opting out of a lot of updates that would
make your life a lot easier. The workload and the cost involved in
making regular upgrades are always offset by the immediate DX
enhancements.

In this section, we present some of the well-established practic-
es to make upgrading React Native to the newer version easier.

SOLUTION: UPGRADE TO THE LATEST VERSION OF
REACT NATIVE (WE'LL SHOW YOU HOW).

Upgrading React Native might not be the easiest thing in the world.
But there are tools that can simplify the process and take most of
the problems away.

The actual amount of work will depend on the number of chang-
es and your base version. However, the steps presented in this
section can be applied to every upgrade, regardless of the state
of your application.

PREPARING FOR THE UPGRADE

React Native Upgrade Helper is a good place to start. On a high
level, it gives you an overview of the changes that have happened
to React Native since the last time you upgraded your local version.

https://react-native-community.github.io/upgrade-helper/

120

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

To do so, the helper compares bare React Native projects creat-
ed by running npx react-native init with your version and
the one you're upgrading to. Next, it shows the differences be-
tween the projects, making you aware of every little modification
that took place in the meantime. Some changes may be addition-
ally annotated with special information that will give more context
on why something has happened.

Additional explanation of the more interesting changes to user files

Having a better overview of the changes will help you move faster
and act with more confidence.

Note: Having more context is really important as there
is no automation in place when it comes to upgrading –
you will have to apply the changes yourself.

121

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

React Native Upgrade Helper also suggests useful content to read
while upgrading. In most cases that includes a dedicated blog post
published on the React Native blog as well as the raw changelog.

Useful content to read while upgrading React Native to a newer version

We advise you to read the recommended resources to get a better
grip on the upcoming release and learn about its highlights.

Thanks to that, you will not only be aware of the changes, but you
will also understand the reasoning behind them. And you will be
ready to open up your project and start working on it.

APPLYING THE JAVASCRIPT CHANGES

The process of upgrading the JavaScript part of React Native is
similar to upgrading other JavaScript frameworks. Our recom-
mendation here is to perform upgrades step-by-step – bumping
one library at a time. As a rule of thumb, once you have upgraded
a library, save your work at that point in a commit and then move
on to the next library. In our opinion, this approach is better than
upgrading everything at once as it gives you more control and
makes catching regressions much easier.

122

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

The first step is to bump the React and React Native dependen-
cies to the desired versions and perform the necessary chang-
es (including breaking changes). To do so, you can look up
the suggestions provided by React Native Upgrade Helper and
apply them manually. Once it's completed, make sure to reinstall
your node_modules .

Note: When performing the upgrade, you may see a lot of
changes coming from iOS project files (everything inside
.xcodeproj, including .pbxproj). These are files generated
by Xcode as you work with your iOS part of React Native
application. Instead of modifying the source file, it is
better to perform the changes via the Xcode UI. This
was the case with upgrading to React Native 0.60 and
the appropriate operations were described in this issue.

Finally, you should try running the application. If everything is
working – perfect. The upgrade was smooth and you can call it
a day! On a more serious note though – now you should check if
there are newer versions of other dependencies you use! They
may be shipping important performance improvements.

Unfortunately, there's also another more pessimistic scenario.
Your app may not build at all or may instantly crash with a red
screen. In that case, it is very likely that some of your third-party
dependencies are not working properly, as in some cases the de-
pendencies include native code which supports new OS features,
so you need to make them compatible with your React Native
version.

Note: If you have a problem with your upgrades, you can
check the Upgrade Support project. It is a repository where
developers share their experience and help each other solve
some of the most challenging operations related to upgrading.

UPGRADING THIRD-PARTY LIBRARIES

In most cases, it's your React Native dependencies that you should
look at first. Unlike regular JavaScript/React packages, they often
depend on native build systems and more advanced React Native

https://github.com/react-native-community/upgrade-helper/issues/61
https://github.com/react-native-community/upgrade-support

123

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

APIs. This exposes them to potential errors as the framework ma-
tures into a more stable API.

If the error occurs during the build time, bumping the depen-
dency to its latest version usually makes it work. But it may not
always be the case. To make sure the version of React Native
you're upgrading to is compatible with your dependencies, use
the align-deps project by Microsoft developers. It allows you to
keep your dependencies on the right version based on the re-
quirements and by leveraging the presets of rules. It also has
a CLI, so you can wire it up to your CI and ensure that no one in
your repo or monorepo will inadvertently introduce incompatible
versions of packages and break the app.

Once your application builds, you are ready to check the chan-
gelog and make yourself familiar with the JavaScript changes
that happened to the public API. If you overlook this step, it can
result in runtime exceptions. Using Flow or TypeScript should help
you ensure that the changes were applied properly.

As you can see, there is no magic trick that would fix all the er-
rors and upgrade the dependencies automatically. This is mostly
manual work that has to be done with patience and attention. It
also requires a lot of testing to ensure that you didn't break any
features along the way. Fortunately, there are tools like align-deps
that help you avoid at least some of the manual work, improving
the upgrading experience significantly.

BENEFITS: YOU'RE RUNNING THE LATEST VERSIONS
WHICH TRANSLATES TO MORE FEATURES AND BETTER SUPPORT.

Upgrading to the latest React Native version shouldn't be differ-
ent from keeping your other frameworks and libraries up to date.
Apart from critical performance and security improvements, new
React Native releases also address the latest underlying changes
to iOS and Android. That includes the breaking changes that ap-
ply to mobile phones, such as when certain APIs get deprecated.

Here is an example: In 2019, Google announced that all Android
applications submitted to Google Play after August 1, 2019 had to

https://github.com/microsoft/rnx-kit/tree/main/packages/align-deps
https://flow.org/
https://www.typescriptlang.org/docs/home.html
https://android-developers.googleblog.com/2019/01/get-your-apps-ready-for-64-bit.html
https://android-developers.googleblog.com/2019/01/get-your-apps-ready-for-64-bit.html

124

Always run the latest React Native version to access the new features The Ultimate Guide to React Native Optimization

be 64-bit. In order to continue developing their applications and
shipping new features, developers had to upgrade to React Native
0.59 and perform the necessary adjustments.

Similar situation happened in 2023, when Google announced
a new target API level requirement, which required developers to
either manually update their targetSdkVersion to 33 or upgrade
their React Native apps to v0.71 or higher.

Upgrades like this are really critical to keeping your users satisfied.
After all, they would be disappointed if the app started to crash
with the newer version of the operating system or disappeared
from the App Store. There might be some additional workload as-
sociated with every release, but staying up to date will pay back
with happier users, more stable apps, and a better development
experience.

The Ultimate Guide to React Native Optimization

HOW TO DEBUG FASTER AND
BETTER WITH FLIPPER

PART 2 | CHAPTER 2

126

How to debug faster and better with Flipper The Ultimate Guide to React Native Optimization

ISSUE: YOU’RE USING CHROME REMOTE DEBUGGER OR SOME OTHER
HACKY WAY TO DEBUG AND PROFILE YOUR REACT NATIVE APPLICATION.

Debugging is one of the more challenging parts of every devel-
oper’s daily work and finding out what is wrong can be very frus-
trating. We usually try to fix bugs as soon as possible, especial-
ly when they are critical and make an app unfunctional. Time is
an important factor in that process and we usually have to be agile
to quickly solve the issues. However, debugging React Native is
not very straightforward, as the issue you are trying to solve may
occur on different levels. Namely, it may be caused by:
•	 JavaScript – your application’s code or React Native,
•	 Native code – third-party libraries or React Native itself.

When it comes to debugging native code, you have to use the tools
built into Android Studio and Xcode.

When it comes to debugging JavaScript code, you may encounter
several difficulties. The first and most naive way to debug is to
write console.logs in your code and check the logs in the terminal.
This method works for solving trivial bugs only or when following
the divide and conquer technique. In all other cases, you may need
to use an external debugger.

By default, React Native ships with some built-in debugging
utilities.

ESTABLISH A BETTER FEEDBACK LOOP BY
IMPLEMENTING FLIPPER AND HAVE MORE
FUN WHILE WORKING ON YOUR APPS.

https://twitter.com/dan_abramov/status/848913169179439104

127

How to debug faster and better with Flipper The Ultimate Guide to React Native Optimization

The most common one is Google Chrome Remote Debugger. It
allows you to set breakpoints in your code or preview logs in
a handier way than in a terminal. Unfortunately, using the Remote
Debugger may lead to hard-to-spot issues. It’s because your code
is executed in Chrome’s V8 engine instead of a platform-specific
engine, such as JSC or Hermes.

The instructions generated in Chrome are sent via Websocket to
the emulator or device. It means that you cannot really use the de-
bugger to profile your app so it detects the performance issues.
It can give you a rough idea of what might cause the issues, but
you will not be able to debug the real cause due to the overhead
of WebSocket message passing.

Another inconvenience is the fact that you cannot easily debug
network requests with the Chrome Debugger (it needs additional
setup and still has its limitations). In order to debug all possible
requests, you have to open a dedicated network debugger us-
ing the emulator’s developer menu. However, its interface is very
small and inconvenient due to the size of the emulator’s screen.

https://developer.chrome.com/docs/devtools/

128

How to debug faster and better with Flipper The Ultimate Guide to React Native Optimization

From the developer menu, you can access other debugging util-
ities, such as layout inspector or performance monitor. The latter
is relatively convenient to use, as it’s displaying only a small piece
of information. However, employing the former is a struggle be-
cause of the limited workspace it provides.

SPENDING MORE TIME ON DEBUGGING AND FINDING
PERFORMANCE ISSUES MEANS A WORSE DEVELOPER
EXPERIENCE AND LESS SATISFACTION

Unlike native developers, the ones working with React Native have
access to a wide range of debugging tools and techniques. Each
originates from a different ecosystem, such as iOS, Android, or JS.
While it may sound great at first, you need to remember that every
tool requires a different level of expertise in the native develop-
ment. That makes the choice challenging for the vast majority of
JavaScript developers.

Inconvenient tooling usually decreases the velocity of the team
and frustrates its members. As a result, they are not as effec-
tive as they could be, affecting the quality of the app and making
the releases less frequent.

SOLUTION: TURN ON FLIPPER AND START DEBUGGING.

Wouldn’t it be great to have one comprehensive tool to handle
all of the above use cases? Of course, it would! And that’s where
Flipper comes into play!

Flipper is a debugging platform for mobile apps. It also supports
React Native as its first-class citizen. Launched in September

https://fbflipper.com/
https://fbflipper.com/docs/features/react-native.html#writing-javascript-plugins-for-react-native--flipper

129

How to debug faster and better with Flipper The Ultimate Guide to React Native Optimization

2019, Flipper has been shipped by default with React Native since
version 0.62.

Source: https://fbflipper.com/docs/features/react-native

It is a desktop app with a convenient interface, which directly in-
tegrates with your application’s JS and native code. This means
that you no longer have to worry about JS runtime differences and
the performance caveats of using the Chrome Remote Debugger.
It comes with a network inspector, React DevTools, and even
a native view hierarchy tool.

What’s more, Flipper lets you preview logs from native code and
track native crashes, so you don’t have to run Android Studio or
Xcode to check what is happening on the native side!

Flipper is easily extensible, so there is a high chance it will be en-
riched with a wide range of useful plugins developed by the com-
munity. At this point, you can use Flipper for tasks such as detect-
ing memory leaks, previewing the content of Shared Preferences,
or inspecting loaded images. Additionally, Flipper for React Native
is shipped with React DevTools, Hermes debugger, and Metro
bundler integration.

https://fbflipper.com/docs/features/react-native

130

How to debug faster and better with Flipper The Ultimate Guide to React Native Optimization

What’s most exciting is that all the needed utilities are placed
in one desktop app. This minimizes context switches. Without
Flipper, a developer debugging an issue related to display-
ing the data fetched from the backend had to use the Chrome
Debugger (to preview logs), in-emulator network requests debug-
ger, and probably in-emulator layout inspector, or a standalone
React Devtools app. With Flipper, all those tools are available as
built-in plugins. They are easily accessible from a side panel and
have similar UI and UX.

BENEFITS: YOU HAVE MORE FUN WORKING WITH REACT
NATIVE AND ESTABLISH A BETTER FEEDBACK LOOP.

A better debugging process makes your app development cycle
faster and more predictable. As a result, your team is able to pro-
duce more reliable code and spot any kind of issues much easier.

Having all the debugging utilities in one interface is definitely er-
gonomic and does not disrupt any interactions with an emulator
or device. The process will be less burdensome for your team and
that will positively impact the velocity of the product development
and bug fixing.

“Feel like a functionality is missing in Flipper?
Good news! Flipper is easily extensible and has
a comprehensive guide on how to write custom

plugins in React. Why not build your own?”

Alexandre Moureaux – App performance specialist at BAM

The Ultimate Guide to React Native Optimization

AVOID UNUSED NATIVE
DEPENDENCIES

PART 2 | CHAPTER 3

132

Avoid unused native dependencies The Ultimate Guide to React Native Optimization

ISSUE: YOU HAVE A LOT OF DEPENDENCIES IN YOUR PROJECT
BUT YOU DON’T KNOW IF YOU NEED ALL OF THEM

Every bit of native code we use in our apps has a runtime cost aso-
ciated with reading, loading, and executing said code. The more
native dependencies our apps have, the slower it is for apps to
start, which impacts the TTI (Time to Interactive) metric, which in
turn frustrates your users who wait longer to start enjoying your
app.

In our React Native apps, we often rely on dependencies that load
Kotlin, Java, Swift, Objective-C, JavaScript, and recently more of-
ten, even C++. Those dependencies are declared in the package.
json file, which allows for a JavaScript bundler to correctly discov-
er and, well, bundle their JS parts into the final application. It may
be counterintuitive at first, but this declaration in the JavaScript
toolchain influences the native side as well. And the reason for
that is the “autolinking” feature of the React Native CLI.

Autolinking allows us to link native dependencies in our React
Native apps automatically, without ever touching native tooling
like Cocoapods, CMake, and Gradle, and just enjoy using the re-
sulting functionality with JavaScript. If you’re not familiar with how
the Android or iOS toolchains work in terms of using community
packages, you might be asking “What in my app would be linking
native dependencies?” While there are some React Native com-
munity packages that are pure JavaScript, many require compiling
native code – sometimes different native code per platform – to
convey that functionality to your application’s JavaScript. When
dealing with native binaries, be it either in C++, Objective-C, or
Swift, linking is a way for the native toolchain to understand where

IMPROVE THE TIME TO INTERACTIVE OF
YOUR APP BY REMOVING THE LINKING
OF UNUSED DEPENDENCIES.

133

Avoid unused native dependencies The Ultimate Guide to React Native Optimization

to find the actual code that’s associated with the third-party de-
pendency we want our app to use. What’s important is that it’s
necessary and for a long time we, React Native developers, need-
ed to do this step manually. Since React Native 0.60, we have
an automated way of doing this thanks to the React Native CLI.

One important thing to know about how autolinking works is that it
crawls your package.json and then node_modules in search of
native code. The tool doesn’t know whether you’re actively using
the library that ships native code or not. It will be linked anyway.
How does that impact your application’s performance, you ask?
All the native dependencies discovered by auto-linking will be
linked and available in our app bundle. As a result, we’ll end up
with an increased application binary size (separate from, and in
addition to, the JS bundle size) and likely worse TTI, as the mobile
OS will spend more time loading the native binaries, showing your
users a splash screen a bit longer.

SOLUTION: FIND AND REMOVE UNUSED DEPENDENCIES.

To find the unused dependencies in our project, we can use
the depcheck tool. It is very effective for analyzing the project’s
dependencies to see how each one of them is used, which de-
pendencies are superfluous, and which dependencies are
missing from package.json . To use depcheck, we need to
run npx depcheck in the root of our project. An example of
the results looks like this:

134

Avoid unused native dependencies The Ultimate Guide to React Native Optimization

Example output of the depcheck library

Dev dependencies likely won’t end up in the JS bundle, but could still
link native code into your production app if they have native code
in their implementationIn this example, the dev Dependencies list-
ed are JS-only, so there is no need to focus on them. The results
show us that we have a few unused dependencies – and what’s
more important, in this example, these dependencies are rely-
ing on some native code. Now we have to remove them and it’s
done! In the example app, removing unused dependencies from
the screenshot above occurred with the following reduction in
the application size:

Comparision of bundle sizes before and after removing unused native dependencies

Possibly even more than reducing the application size, , there was
a noticeable improvement in the Time to Interactive on the tested
Android device, which was reduced by 17% in this case.

You may be wondering how you can measure the TTI in your appli-
cation. There are a few ways to do it. Whichever you choose, re-
member to always measure on a release version of the app when
dealing with absolute numbers.

Unused dependencies
* lottie-react-native
* react-native-gesture-handler
* react-native-maps
* react-natave-reanimated
* react-native-video
* react-native-webview

Unused devDependencies
* @babel/core
* @babel/runtime
* @react-native-community/eslint-config
* @tsconfig/react-native
* @types/jest
* @types/react-test-renderer
* babel-jest
* jest-circus
* metro-react-native-paper-preset
* typescript

135

Avoid unused native dependencies The Ultimate Guide to React Native Optimization

One way is to use a stopwatch and measure the time the app took
to show the first screen, as shown here. It’s entirely manual, but
it will often get the job done for one-off measurements. Another
manual way is to use a recent phone that has a high-frame rate
camera (eg 120fps), and record a video of your app launch on
a real device. You can then load the video, zooming into the time-
line to the exact time offsets between tapping your app icon and
when the first meaningful render happens. We have used this da-
ta-driven method to accurately and repeatedly observe improve-
ments as small as 50ms, which may sound small, but can often
be the difference between an adequate experience for the user
versus a magical one.

If we want to get a more detailed output, we can make use of
Perfetto for Android. For iOS, we can enable Perf Monitor from
the DevMenu and double-tap on the monitor window to expand.
The output will look like this:

Performance monitor on the iOS simulator

We can also use App launch from Xcode instruments, but you
should note that this is not the same as the end-user experience
on their device. You should always double-check your production
application build on a retail device as to as possible to what your
users have. All you need is to install a release build through pro-
filing to your real device. Then select App Launch from the win-
dow that will appear automatically once the build is installed. Hit

https://twitter.com/nparashuram/status/1149359709943500800?s=20&t=gmzckxX9fEYwtgW9J2fYEQ
https://perfetto.dev/

136

Avoid unused native dependencies The Ultimate Guide to React Native Optimization

the record button, and once the app has launched, stop recording.
You will get an output similar to this:

Example usage of Xcode’s App Launch tool

There are two phases when calculating app launch time on iOS.
The first one is called pre-main time, and it’s the time before
the main function of the app is executed. It’s marked with the pur-
ple area on the graph above – all the work needed to launch
the app correctly, like initialization and the linking of libraries hap-
pens in this phase.

The second phase, called post-main-time, is the time between
executing the app’s main function and presenting the first in-
teractable view to the user. It’s marked with the green color on
the graph above. The total app launch time is the sum of both of
these metrics. If you want to learn more about testing app launch
time, here’s a good read on this topic.

It’s worth mentioning that there are lots of third-party tools
helping developers to gain a bunch of performance information
from apps already submitted to Google Play and App Store. The
most popular are Firebase Performance Monitoring, Sentry, and
DataDog. The key advantage of using one of these tools is gaining

https://levelup.gitconnected.com/testing-your-app-launch-time-ios-e3d1471dda54
https://rnfirebase.io/perf/usage
https://docs.sentry.io/product/performance/
https://www.datadoghq.com/product/apm/

137

Avoid unused native dependencies The Ultimate Guide to React Native Optimization

data about performance from the myriad of different devices used
by your actual users.

BENEFITS: A SMALLER BUNDLE SIZE AND FASTER TIME TO INTERACTIVE.

Removing a few unused native dependencies ended up reducing
both the size of the app bundle and TTI by around 17%. Providing
only resources needed by the app can improve the Time to
Interactive metric, making users less likely to uninstall your app
from their devices due to excessive load time.

It’s worth remembering that although autolinking is a great and
powerful feature, it can be overzealous when it comes to linking
code our app doesn’t really use. Make sure to keep your depen-
dencies up to date and clean up unused ones during refactorings.

“There are so many tricky parts to making
a great native app, and to lower the barrier to
entry, React Native can abstract away things
that you might want to come back and check

on later once you’ve got your app up and
running – this ebook does a solid job of helping
you understand how to really get from good to

great.“

Orta Therox – CocoaPods creator, TypeScript core contributor

The Ultimate Guide to React Native Optimization

OPTIMIZE YOUR
APPLICATION STARTUP
TIME WITH HERMES

PART 2 | CHAPTER 4

139

Optimize your application startup time with Hermes The Ultimate Guide to React Native Optimization

ISSUE: YOURE LOADING A LOT OF ANDROID PACKAGES DURING
THE STARTUP TIME WHICH IS UNNECESSARY. ALSO, YOURE
USING AN ENGINE THAT IS NOT OPTIMIZED FOR MOBILE.

Users expect applications to be responsive and load fast. Apps
that fail to meet these requirements can end up receiving bad rat-
ings in the App Store or Play Store. In the most extreme situations,
they can even get abandoned in favor of their competition.

There is no single definition of the startup time. Its because there
are many different stages of the loading phase that can affect how
“fast” or “slow” the app feels. For example, in the Lighthouse re-
port, there are eight performance metrics used to profile your web
application. One of them is Time to Interactive (TTI), which mea-
sures the time until the application is ready for the first interaction.

There are quite a few things that happen from the moment you
press the application icon from the drawer for the first time.

The loading process starts with a native initialization which loads
the JavaScript VM and initializes all the native modules (1 in
the above diagram). It then continues to read the JavaScript from
the disk and loads it into the memory, parses, and starts execut-
ing (2 in the above diagram). The details of this operation were
discussed earlier in the section about choosing the right libraries
for your application.

ACHIEVE A BETTER PERFORMANCE
OF YOUR APPS WITH HERMES.

https://web.dev/lighthouse-performance/
https://web.dev/lighthouse-performance/

140

Optimize your application startup time with Hermes The Ultimate Guide to React Native Optimization

In the next step, React Native starts loading React components
and sends the final set of instructions to the UIManager (3 in
the above diagram). Finally, the UIManager processes the infor-
mation received from JavaScript and starts executing the na-
tive instructions that will result in the final native interface (4 in
the above diagram).

As you can see in the diagram below, there are two groups of op-
erations that influence the overall startup time of your application.

The first one involves the first two operations (1 and 2 in the di-
agram above) and describes the time needed for React Native
to bootstrap (to spin up the VM and for the VM to execute
the JavaScript code). The other one includes the remaining op-
erations (3 and 4 in the diagram above) and is associated with
the business logic that you have created for your application. The
length of this group is highly dependent on the number of compo-
nents and the overall complexity of your application.

This section focuses on the first group – the improvements related
to your configuration and not the business logic itself.

If you have not measured the overall startup time of your applica-
tion or have not played around with things such as Hermes yet –
keep on reading.

LONG STARTUP TIMES AND SLOW UX CAN BE ONE OF THE REASONS
YOUR APP GETS A BAD RATING AND ENDS UP BEING ABANDONED.

Creating applications that are fun to play with is extremely im-
portant, especially considering how saturated the mobile market
already is. Now, all mobile apps have to be not only intuitive, they
also should be pleasant to interact with.

141

Optimize your application startup time with Hermes The Ultimate Guide to React Native Optimization

There is a common misconception that React Native applications
come with a performance trade-off compared to their native coun-
terparts. The truth is that with enough attention and configuration
tweaks, they can load just as fast and without any considerable
difference.

SOLUTION: TURN ON HERMES TO BENEFIT
FROM A BETTER PERFORMANCE.

While a React Native application takes care of a native interface,
it still requires JavaScript logic to be running at runtime. To do
so, it spins off its own JavaScript virtual machine. Until recently,
it used JavaScript – Core (JSC). This engine is a part of WebKit –
which powers the Safari browser – and by default is only avail-
able on iOS. For a long time, it made sense for React Native to
use JSC for running JavaScript on Android as well. Its because
using the V8 engine (that ships with Chrome) could potentially in-
crease the differences between Android and iOS, and make shar-
ing the code between the platforms way more difficult.

JavaScript engines need to perform various complicated opera-
tions. They constantly ship new heuristics to improve the overall
performance, including the time needed to load the code and then
execute it. To do so, they benchmark common JavaScript oper-
ations and challenge the CPU and memory needed to complete
this process.

Most of the work of developers handling the JavaScript en-
gines is being tested against the most popular websites, such as
Facebook or Twitter. It is not a surprise that React Native uses
JavaScript in a different way. For example, the JavaScript engine
made for the web doesnt have to worry much about the startup
time. The browser will most likely already be running at the time
of loading a page. Because of that, the engine can shift its atten-
tion to the overall CPU and memory consumption, as web applica-
tions can perform a lot of complex operations and computations,
including 3D graphics.

As you could see on the performance diagram presented in
the previous section, the JavaScript virtual machine consumes

https://developer.apple.com/documentation/javascriptcore

142

Optimize your application startup time with Hermes The Ultimate Guide to React Native Optimization

a big chunk of the apps total loading time. Unfortunately, there is
little you can do about it unless you build your own engine. Thats
what the Meta team ended up doing.

Meet Hermes – a JavaScript engine made specifically with React
Native in mind. It is optimized for mobile and focuses on relatively
CPU-in – sensitive metrics, such as application size and memory
consumption. Chances are youre already using it! As of v0.70,
React Native has been shipping with Hermes turned on by default.
Which marks an important milestone in the engines stability.

Its come a long way from the bare-bones Android-only engine
open – sourced in 2019, with a carefully curated set of support-
ed JS features – due to size constraints – through finding low-
size-footprint ways of adding more EcmaScript spec features,
like Proxies and Intl, until making it available for macOS and iOS.

Today Hermes is still small enough (~2 MB) to provide significant
improvements to apps TTI and gives us a set of features rich
enough to be used in most of the apps out there.

Before we go into the details of enabling Hermes in existing React
Native applications, lets take a look at some of its key architec-
tural decisions.

BYTECODE PRECOMPILATION

Typically, the traditional JavaScript VM works by parsing
the JavaScript source code during the runtime and then produc-
ing the bytecode. As a result, the execution of the code is delayed
until the parsing completes. It is not the same with Hermes. To
reduce the time needed for the engine to execute the business
logic, it generates the bytecode during the build time.

https://engineering.fb.com/android/hermes/
https://engineering.fb.com/android/hermes/

143

Optimize your application startup time with Hermes The Ultimate Guide to React Native Optimization

It can spend more time optimizing the bundle using various tech-
niques to make it smaller and more efficient. For example, the gen-
erated bytecode is designed in a way so that it can be mapped
in the memory without eagerly loading the entire file. Optimizing
that process brings significant TTI improvements as I/O operations
on mobile devices tend to increase the overall latency.

NO JIT

The majority of modern browser engines use just-in-time (JIT)
compilers. It means that the code is translated and executed line-
by-line. However, the JIT compiler keeps track of warm code seg-
ments (the ones that appear a few times) and hot code segments
(the ones that run many times). These frequently occurring code
segments are then sent to a compiler that, depending on how
many times they appear in the program, compiles them to the ma-
chine code and, optionally, performs some optimizations.

Hermes, unlike the other engines, is an AOT(ahead-of-time) en-
gine. It means that the entire bundle is compiled to bytecode
ahead of time. As a result, certain optimizations that JIT compilers
would perform on hot code segments are not present.

On one hand, it makes the Hermes bundles underperform in bench-
marks that are CPU-oriented. However, these benchmarks are not
really comparable to a real-life mobile app experience, where TTI
and application size takes priority.

On the other hand, JIT engines decrease the TTI as they need
time to parse the bundle and execute it in time. They also need
time to “warm up”. Namely, they have to run the code a couple of
times to detect the common patterns and begin to optimize them.

If you want to start using Hermes on Android, make sure to turn
the enableHermes flag in android/app/build.gradle to true:

project.ext.react = [
 entryFile: ''index.js'',
 enableHermes: true
]

144

Optimize your application startup time with Hermes The Ultimate Guide to React Native Optimization

For iOS, turn the hermes_enabled flag to true in ios/Podfile:

In both cases, whenever you switch the Hermes flag, make sure
to rebuild the project according to instructions provided in the na-
tive files. Once your project is rebuilt, you can now enjoy a faster
app boot time and likely smaller app size.

BENEFITS: A BETTER STARTUP TIME LEADS TO A BETTER
PERFORMANCE. ITS A NEVER-ENDING STORY.

Making your application load fast is an ongoing effort and its final
result will depend on many factors. You can control some of them
by tweaking both your applications configuration and the tools
it uses to compile the source code.

Turning Hermes on is one of the things that you can do today
to drastically improve certain performance metrics of your app,
mainly the TTI.

Apart from that, you can also look into other significant improve-
ments shipped by the Meta team. To do so, get familiar with
their write-up on React Native performance. It is often a game of
gradual improvements that make all the difference when applied
at once. The React Native core team has created a visual report
on benchmarking between stock RN and Hermes-enabled RN:
see here.

As we have mentioned in the section on running the latest React
Native, Hermes is one of those assets that you can leverage as
long as you stay up to date with your React Native version.

Doing so will help your application stay on top of the performance
game and let it rn at a maximum speed.

use_react_native!(
 :path => config[:reactNativePath],
 # to enable hermes on iOS, change `false` to `true` and
then install pods
 :hermes_enabled => true
)

https://engineering.fb.com/android/dive-into-react-native-performance/
https://reactnative.dev/blog/2022/07/08/hermes-as-the-default#benchmarking

145

Optimize your application startup time with Hermes The Ultimate Guide to React Native Optimization

THE FUTURE WITH STATIC HERMES (EXPERIMENTAL)

At the React Native EU 2023 conf, the lead Hermes engineer,
Tzvetan Mikov, announced an experimental tool that his team
works on codenamed “Static Hermes”. It pushes what Hermes can
do today with the ability to statically compile typed JavaScript
code (essentially TypeScript or Flow) into native assembler in-
structions ahead of time. It exercises the idea that your app does
not need to use Hermes or any other JavaScript engine to run, be-
cause it already has the native code inside it. Thats pretty wild.

Static Hermes is an ongoing experiment, however you can give it
a try today. Read more on Hermes GitHub issue tracker: “How
to try Static Hermes”

https://twitter.com/tmikov

The Ultimate Guide to React Native Optimization

OPTIMIZE YOUR ANDROID
APPLICATION’S SIZE WITH
THESE GRADLE SETTINGS

PART 2 | CHAPTER 5

147

Optimize your Android application’s size with these Gradle settings The Ultimate Guide to React Native Optimization

ISSUE: YOU ARE NOT ENABLING PROGUARD FOR RELEASE
BUILDS AND CREATING APK WITH CODE FOR ALL CPU
ARCHITECTURES. YOU SHIP A LARGER APK.

At the beginning of each React Native project, you usually don’t
care about the application size. After all, it is hard to make such
predictions so early in the process. But it takes only a few addi-
tional dependencies for the application to grow from a standard 5
MB to 10, 20, or even 50 MB, depending on the codebase.

Should you really care about app size in the era of super-fast
mobile internet and WiFi access everywhere? Why does a bun-
dle size grow so rapidly? We will answer those questions in this
section. But first, let’s have a look at what a typical React Native
bundle is made of.

By default, a React Native application on Android consists of:
•	 four sets of binaries compiled for different CPU architectures,
•	 a directory with resources such as images, fonts, etc.,
•	 a JavaScript bundle with business logic and your React

components,
•	 other files.

React Native offers some optimizations that allow you to improve
the structure of the bundle and its overall size. But they are dis-
abled by default.

IMPROVE TTI AND REDUCE MEMORY USAGE
AND THE SIZE OF YOUR APP BY ADJUSTING
PROGUARD RULES TO YOUR PROJECTS.

148

Optimize your Android application’s size with these Gradle settings The Ultimate Guide to React Native Optimization

If you are not using them effectively, especially when your appli-
cation grows, you are unnecessarily increasing the overall size
of your application in bytes. That can have a negative impact on
the experience of your end users. We discuss it in the next section.

A BIGGER APK SIZE MEANS MORE TIME NEEDED TO DOWNLOAD FROM
THE APP STORE AND MORE BYTECODE TO LOAD INTO MEMORY

It’s great that you and your team operate on the latest devices
and have fast and stable access to the internet. But you need to
remember that not everyone has the same luxury. There are still
parts of the world where network accessibility and reliability are
far from perfect. Projects such as Starlink already improve that sit-
uation, but that will take time to cover the most remote areas out
there.

Right now, there are still markets where every megabyte of traf-
fic has its price. In those regions, the application’s size directly
impacts the conversion, and the installation/ cancellation ratio
increases along with the app size.

Source: https://segment.com/blog/mobile-app-size-effect-on-downloads/

https://www.starlink.com/
https://segment.com/blog/mobile-app-size-effect-on-downloads/

149

Optimize your Android application’s size with these Gradle settings The Ultimate Guide to React Native Optimization

It is also a common belief that every well crafted and carefully
designed application not only provides a beautiful interface but is
also optimized for the end device. Well, that is not always the case.
And because the Android market is so competitive, there is a big
chance that a smaller alternative to those beautiful yet large apps
is already gaining more traction from the community.

Another important factor is device fragmentation. The Android
market is very diverse in that respect. There are more than
20 popular manufacturers, each releasing an array of devices ev-
ery year. Contributing to a relatively significant share of mid to
low-end devices, which account for over 60% of all smartphone
sales annually. And those devices may face issues when dealing
with bigger APKs.

As we have stressed already, the startup time of your application
is essential. The more code the device has to execute while open-
ing up your code, the longer it takes to launch the app and make
it ready for the first interaction.

Now, let’s move to the last factor worth mentioning in this con-
text – device storage.

Apps usually end up taking up more space after the installation.
Sometimes they may even not fit into the device’s memory. In
such a situation, users may decide to skip installing your product
if that would mean removing other resources such as applications
or images.

SOLUTION: FLIP THE BOOLEAN FLAG
ENABLEPROGUARDINRELEASEBUILDS TO TRUE, ADJUST THE PROGUARD
RULES TO YOUR NEEDS, AND TEST RELEASE BUILDS FOR CRASHES.
ALSO, FLIP ENABLESEPARATEBUILDPERCPUARCHITECTURE TO TRUE.

Android is an operating system that runs on plenty of devices with
different architectures, so your build must support most of them.
React Native supports four: armeabi-v7a , arm64-v8a , x86 ,
and x86_64 .

https://www.appbrain.com/stats/top-manufacturers
https://www.statista.com/statistics/934471/smartphone-shipments-by-price-category-worldwide/

150

Optimize your Android application’s size with these Gradle settings The Ultimate Guide to React Native Optimization

While developing your application, Gradle generates the APK file
that can be installed on any of the mentioned CPU architectures.
In other words, your APK (the file outputted from the build pro-
cess) is actually four separate applications packaged into a single
file with .apk extension. This makes testing easier as the ap-
plication can be distributed onto many different testing devices
at once.

Unfortunately, this approach has its drawbacks. The overall size
of the application is now much bigger than it should be as it con-
tains the files required by all architectures. As a result, users will
end up downloading extraneous code that is not even compatible
with their phones.

Thankfully, you can optimize the distribution process by taking
advantage of App Bundles when releasing a production version
of your app.

App Bundle is a publishing format that allows you to contain all
compiled code and resources. It’s all due to the fact that Google
Play Store Dynamic Delivery will later build tailored APKs depend-
ing on the end users’ devices.

To build App Bundle, you have to simply invoke a different script
than usual. Instead of using ./gradlew assembleRelease , you
should use ./gradlew bundleRelease , but inside React Native
Community CLI there’s a command that handles everything under
the hood, so all you need to run is:

Building a React Native app as App Bundle

The main advantage of the Android App Bundle over builds for
multiple architectures per CPU is the ease of delivery. After all,
you have to ship only one artifact and Dynamic Delivery will do all
the magic for you. It also gives you more flexibility on supported
platforms.

npx react-native build-android

https://developer.android.com/guide/app-bundle
https://developer.android.com/guide/app-bundle
https://developer.android.com/guide/app-bundle

151

Optimize your Android application’s size with these Gradle settings The Ultimate Guide to React Native Optimization

You don’t have to worry about which CPU architecture your end
user’s device has. The average size reduction for an app is around
35%, but in some cases, it can be even cut in half, according to
the Android team.

Source: https://medium.com/google-developer-experts/
exploring-the-android-app-bundle-ca16846fa3d7

Another way of decreasing the build size is by enabling Proguard.
Proguard works in a similar way to dead code elimination from
JavaScript – it gets rid of the unused code from third-party SDKs
and minifies the codebase.

However, Proguard may not work out-of-the-box with some proj-
ects and usually requires an additional setup to achieve opti-
mal results. In this example, we were able to reduce the size of
the mentioned 28 MB build by 700 KB. It is not much, but it is still
an improvement.

Enabling proguard in android/app/build gradle

Another good practice is keeping your eye on resources optimiza-
tion. Each application contains some svg or png graphics that can
be optimized using free web tools.

def enableProguardInReleaseBuilds = true

https://medium.com/google-developer-experts/exploring-the-android-app-bundle-ca16846fa3d7
https://medium.com/google-developer-experts/exploring-the-android-app-bundle-ca16846fa3d7

152

Optimize your Android application’s size with these Gradle settings The Ultimate Guide to React Native Optimization

Reducing redundant text from svg and compressing png images
can save some bytes when your project has already too many of
them.

BENEFITS: A SMALLER APK, SLIGHTLY FASTER
TTI, AND SLIGHTLY LESS MEMORY USED.

All the mentioned steps are worth taking when you’re struggling
with a growing application size. You will achieve the most signifi-
cant size reduction by building the app for different architectures.
But the list of possible optimizations doesn’t stop there.

By striving for a smaller APK size, you will do your best to reduce
the download cancellation rate. Also, your customers will benefit
from a shorter Time To Interactive and be more inclined to use
the app more often.

Finally, you will demonstrate that you care about every user, not
only those with top-notch devices and fast internet connections.
The bigger your platform gets, the more important it is to support
those minor groups, as every percent of users translates into
hundreds of thousands of actual users. If you’d like to learn more
about optimizing Android, check the Android Profiling chapter.

The Ultimate Guide to React Native Optimization

EXPERIMENT WITH
THE NEW ARCHITECTURE
OF REACT NATIVE

PART 2 | CHAPTER 6

154

Experiment with the New Architecture of React Native The Ultimate Guide to React Native Optimization

ISSUE: YOUR APP IS USING OLD ARCHITECTURE WITHOUT
THE CONCURRENT FEATURES OF REACT 18.

Maybe it's better to say “current” architecture since it's still mostly
used by production apps. This term refers to how React Native's
two realms (Native and JS) communicate with each other. Both
new and old architecture is based on the communication between
JavaScript and the native side. Currently, this communication is
handled by the bridge. Let's go over its limitations in order to eas-
ier understand the problems that the New Architecture is trying
to solve.
•	 	It is asynchronous: the JavaScript side submits data to a bridge

and waits for the data to be processed by the native side
•	 	It's single-threaded (that's why it's important to not overload

the JS thread and execute animations on the UI thread).
•	 It adds additional overhead when it comes to the serialization

of data from JSON objects.

The bridge is still working fine for most use cases. However, when
we start to send a lot of data over the bridge, it may become a bot-
tleneck for our app. This problem can be seen when rendering a lot
of components in a long list. In the case when the user scrolls fast,
there will be a blank space caused by the communication between
the JS and native sides being asynchronous. Essentially what
happens is that we are having a “traffic jam” on our bridge with
objects waiting to be serialized. The same issue with the bridge
being “overloaded” can be seen in native modules sending a lot
of data back and forth.

This bottleneck, together with providing a type safe way of commu-
nicating between native and JS, are the main things that the new
architecture is trying to solve. However, not everything about
new architecture is as good as it may seem. We will also get into
the drawbacks that it brings.

LEVERAGE THE CAPABILITIES OF THE NEW
RENDERING SYSTEM INSIDE YOUR APP.

155

Experiment with the New Architecture of React Native The Ultimate Guide to React Native Optimization

WHAT IS NEW ARCHITECTURE?

Starting from React Native v0.68 developers can leverage new
capabilities of the framework. The New Architecture relies on
a series of tools which are key components to the new experience,
two most important ones are: Fabric and TurboModules. The first
one is a new rendering system and the second one is a new way of
writing native modules. We will get into details later in this section.

Codegen and JSI are two new tools improving developer experi-
ence. They are essential to understand how the new architecture
works.

Codegen drastically improves DX by generating a lot of native
boilerplate code and ensuring type safety. And JSI, a C++ API for
interacting with any JS engine.

Note: New Architecture is still considered experimental.
Always use the latest version of React Native when using it.

Codegen

A code generation tool that makes JS source of truth by auto-
mating the compatibility between JS and native side. It allows to
write statically typed JS (called JS Spec) which is then used to
generate the interface files needed by Fabric native components
and TurboModules. Spec consists of a set of types written in
TypeScript or Flow that defines all the APIs provided by the native
module. Codegen ensures type-safety as well as compile-time
type safety, which means smaller code and faster execution as
both realms can trust each other around validating the data every
time. To find out more about it, refer to the docs.

SOLUTION: MIGRATE YOUR APP
TO NEW ARCHITECTURE.

https://reactnative.dev/docs/new-architecture-library-intro#writing-the-javascript-spec

156

Experiment with the New Architecture of React Native The Ultimate Guide to React Native Optimization

JSI

JSI is the foundation of the New Architecture, a C++ API for in-
teracting with any JS engine. In contrast to the bridge which was
asynchronous, JSI is synchronous which allows for invoking na-
tive functions faster. It lets JavaScript to hold references to C++
host objects and invoke methods directly on them. This removes
the major overhead of asynchronous communication between JS
and native by serializing objects using the bridge.

Fabric

Fabric is React Native's new concurrent rendering system, a con-
ceptual evolution of the legacy render system. The core principle
is to unify more render logic in C++ to better leverage interoper-
ability between platforms. Host Components like View, Text, etc.
are now lazily initialized, resulting in faster startups. Fabric allows
us to take advantage of the features introduced in React 18.

TurboModules

This is a new way of writing native modules that also leverages
the power of JSI, allowing for synchronous, and an order of mag-
nitude faster data transfer from native to JS and vice versa. It is
a rewrite of the communication layer between JavaScript and plat-
form native modules like Bluetooth, Biometrics, etc. It also allows
for writing native code for both platforms using C++ and introduc-
es the lazy loading of modules to speed up your app startup time.

Bridgeless mode

The ultimate goal of the New Architecture is to fully sunset
the bridge. Starting from React Native 0.73, you can enable
Bridgeless Mode which will disable the creation of the bridge
entirely.

This will result in a slightly faster app startup due to removing
the overhead of loading the rest of the React Native runtime: error
handling, global event emitters, timers, and more.

157

Experiment with the New Architecture of React Native The Ultimate Guide to React Native Optimization

HOW TO TURN ON NEW ARCHITECTURE

According to official React Native core team recommendation, in
order to turn on the New Architecture in your app, you need to
update your app to the latest version of React Native

To migrate your app to the New Architecture, follow these steps:

1.	 Upgrade your app to at least React Native version, you can
use https://react-native-community.github.io/upgrade-helper/

2.	 [Android] Set newArchEnabled=true in gradle.properties .
3.	 [iOS] Run RCT_NEW_ARCH_ENABLED=1 pod install inside the iOS

folder.
4.	 Run the app in debug and release modes. Look for Components

that are not yet compatible – they will show as red boxes –
Unimplemented component: <ComponentName> – and you
will likely notice them.

5.	 In case of unsupported components, use the Interop Layer
through react-native.config.js file and the unstable_react-
LegacyComponentNames option and try again. Take note
that the interop layer is not fully compatible with the old ren-
dering and event system, so inconsistencies may be expected
in some cases.

BENEFITS: YOU ARE ABLE TO LEVERAGE ALL THE LATEST FEATURES
INCLUDING REACT 18, FABRIC, TURBOMODULES, AND JSI.

Now that you know the basics of how the New Architecture works,
let's go over the benefits.

Performance

Due to the synchronous nature of the new architecture, while com-
municating with the native side, there will be some performance
improvements. The app's startup time will be significantly reduced
as every native module will be lazily-loaded. Once the bridgeless
mode will be available it will also remove the overhead of loading
the bridge at startup. However, not every scenario proves this, in
some of the benchmarks architecture performance is worse.

https://react-native-community.github.io/upgrade-helper/

158

Experiment with the New Architecture of React Native The Ultimate Guide to React Native Optimization

Meta's goal was not to make new architecture X times faster than
the old one. Apart from removing major bottlenecks they wanted
to create a new solid foundation which would allow for new ca-
pabilities that could not be developed using previous architecture.
Migration of the Facebook app took over a year and they haven't
noticed any significant performance improvements nor regres-
sions that are perceivable by the end user. However, this doesn't
mean that performance improvements won't come in the future.
Now that they reworked internals they have a great foundation
to build upon.

Let's go over some performance benchmarks by Alexandre Moureaux
from BAM. Here is the link to the source: https://github.com/reactwg/
react-native-new-architecture/discussions/85

Benchmark of rendering 10K views

In this case new architecture proves that it's more efficient than
the old one. Using on average less CPU but more RAM.

https://github.com/Almouro
https://github.com/reactwg/react-native-new-architecture/discussions/85
https://github.com/reactwg/react-native-new-architecture/discussions/85

159

Experiment with the New Architecture of React Native The Ultimate Guide to React Native Optimization

Benchmark of rendering 2K Text components

In this scenario, the old architecture is faster, mainly because of
heavier UI thread consumption.

The official response from the React Native team is that their in-
ternal benchmarks while rolling out the New Architecture to us-
ers was neutral across all React Native surfaces in the Facebook
app on both Android and iOS. As stated by Samuel Susla in
this discussion thread, “In the last years, we conducted dozens of
tests in production on millions of devices to assure performance
was neutral.”

So in most use cases, you can expect a neutral performance im-
pact without any performance regressions. And keep in mind
that the New Architecture is getting better every single day with
many developers contributing to the repository, so the results may
be totally different by the time you are reading this.

FUTURE READINESS

New Architecture allows your app to leverage Concurrent React
features. Which improves UI responsiveness, provides Suspense
for data fetching to handle complex UI loading schemes, and en-
sures your app is ready for any further React innovations that will
be built on top of its new concurrent engine introduced in React 18.

Let's see how we can leverage React18's startTransition API
in order to prioritize between two state updates. In our example,

https://github.com/reactwg/react-native-new-architecture/discussions/85#discussioncomment-3969000

160

Experiment with the New Architecture of React Native The Ultimate Guide to React Native Optimization

a button click can be considered an urgent update whereas
the NonUrgentUI can be considered a non-urgent update. To
tell React about a non-urgent update, we can wrap the setState
in the startTransition API. This allows React to prepare a new
UI and show the old UI until a new one is prepared. In our ex-
ample, we wrapped setNonUrgentValue in startTransition
and told React that nonUrgentValue is a transition and not so
urgent, it may take some time. We've also added a condition-
al backgroundColor . When you run this example, you will see
that once you click on the button, the view will retain its old UI for
e.g., if we start at value 1, the UI will be green.

Once you click on the button, the Value text UI will be updated but
the UI for the container will still remain green until the transition
is completed and the color will change to red due to the new UI
being rendered. That's the magic of React's concurrent rendering.

To understand it better, assume that wrapping an update
in startTransition renders it in a different universe. We don't
see that universe directly but we can get a signal from it us-
ing the isPending variable returned from the useTransition
hook. Once the new UI is ready, both universes merge together
to show the final UI.

import React from 'react';
import { Button, StyleSheet, Text, View } from 'react-native';

const dummyData = Array(10000).fill(1);

const NonUrgentUI = ({ value, isPending }) => {
 const backgroundStyle = {
 backgroundColor: value % 2 === 0 ? 'red' : 'green',
 };

 return (
 <View>
 <Text>Non urgent update value: {isPending ? 'PENDING' :
value}</Text>
 <View style={[styles.container, backgroundStyle]}>
 {dummyData.map((_, index) => (
 <View key={index} style={styles.item} />
))}
 </View>
 </View>
);
};

161

Experiment with the New Architecture of React Native The Ultimate Guide to React Native Optimization

To understand it better, let's visualize the code snippet that we
just went through. The image below shows a comparison of
when we use startTransition and when we don't. Looking
at the image, we see that React flushes the urgent update right
off, which happens due to calling setValue without wrapping it
in startTransition .

Next, we see that React shows the old UI (viewed in green) for
the UI that depends on the nonurgent updates, which means
the updates that are wrapped in startTransition . We also
see a Pending text displayed, this is a way for React18 to tell us
that the new UI depending on this state is not yet ready. Once it's
ready, React flushes it and we don't see the Pending text anymore,
and the view color changes to red.

const ConcurrentStartTransition = () => {
 const [value, setValue] = React.useState(1);
 const [nonUrgentValue, setNonUrgentValue] = React.useSta-
te(1);
 const [isPending, startTransition] = React.useTransition();

 const handleClick = () => {
 const newValue = value + 1;
 setValue(newValue);
 startTransition(() => {
 setNonUrgentValue(newValue);
 });
 };
 return (
 <View>
 <Button onPress={handleClick} title=''Increment value''
/>
 <Text>Value: {value}</Text>
 <NonUrgentUI value={nonUrgentValue} isPending={isPend-
ing} />
 </View>
);
};

export default ConcurrentStartTransition;

const styles = StyleSheet.create({
 container: {
 flexDirection: 'row',
 flexWrap: 'wrap',
 },
 item: {
 width: 10,
 height: 10,
 },
});

162

Experiment with the New Architecture of React Native The Ultimate Guide to React Native Optimization

On the other hand, if we don't use startTransition , React
tries to handle both updates as urgent and flushes once both are
ready. This certainly has a few downsides, such as the app trying
to render some heavy UI all at once which may cause jarring ef-
fects for the users. With React18, we can handle this by delaying
the updates that are not urgent.

There are some other noticeable features in React18 that you
might want to check out by playing with the linked sandbox-
es from React's official website. See useDeferredValue and
startTransition with Suspense.

MAINTENANCE & SUPPORT

The React Native core team is committed to offer support for the 3
latest versions of React Native (you can check the support policy
here: https:// github.com/reactwg/react-native-releases#releas-
es-support-policy). And the React core team plans new features
built on the concurrent rendering engine. It's important to not stay
behind, as the cost of paying the tech debt, will get higher in time.
It's worth calling out that React Native is no different to any other
software project in this regard. Not updating dependencies may
not only cause your team to spend more time on this task when

https://codesandbox.io/s/jovial-frost-30embe
https://codesandbox.io/s/jovial-frost-30embe
https://github.com/reactwg/react-native-releases#releases-support-policy
https://github.com/reactwg/react-native-releases#releases-support-policy

163

Experiment with the New Architecture of React Native The Ultimate Guide to React Native Optimization

it's unavoidable. It can also expose your app to security vulnera-
bilities already patched in the upstream.

The React Native team has dedicated capacity to help the com-
munity solve their app and library problems regarding new ar-
chitecture adoption in close cooperation. Although it's not stable
yet, it's worth trying out in your app today. Especially considering
that since React Native v0.72 the Interop Layer exists which al-
lows running most of the old architecture components with apps
that enabled new architecture.

IF YOU NEED HELP WITH
PERFORMANCE, STABILITY, USER
EXPERIENCE, OR OTHER COMPLEX
ISSUES – CONTACT US!
As React Native Core Contributors and leaders of the com-
munity, we will be happy to help.

https://github.com/reactwg/react-native-new-architecture/discussions/135
https://www.callstack.com/contact-us?utm_campaign=RN_Performance&utm_source=guide&utm_content=guide_contact_3

The Ultimate Guide to React Native Optimization

PART 3

These days, having a stable and comfortable development setup
that encourages shipping new features and doesn't slow you down
is a must. You have to ship fast and be ahead of your competitors.

React Native plays really well in such environments. For example,
one of its biggest selling points is that it allows you to ship updates
to your applications without undergoing the App Store submission.
They're called Over-the-Air (OTA) updates.

The question is: is your application ready for that? Does your de-
velopment pipeline accelerate the development and shipping fea-
tures with React Native?

Most of the time, you would like the answer to be simply yes. But
in reality, it gets complicated.

In this section, we present some of the best practices and rec-
ommendations that allow you to ship your apps faster and with
more confidence. And it's not just about turning on the Over-the-
Air updates, as most articles suggest. It's about building a steady
and healthy development environment where React Native shines
and accelerates innovation.

And that's what this part of our guide is all about.

HOW TO SHIP QUICKER WITH A STABLE
DEVELOPMENT ENVIRONMENT
React Native is great for shipping fast and with confidence, but
are you ready for that?

https://callstack.com/blog/how-react-native-development-can-save-your-business-in-the-time-of-coronavirus-pandemic/

The Ultimate Guide to React Native Optimization

RUN TESTS FOR KEY
PIECES OF YOUR APP

PART 3 | CHAPTER 1

166

Run tests for key pieces of your app The Ultimate Guide to React Native Optimization

ISSUE: YOU DON'T WRITE TESTS AT ALL OR WRITE LOW-QUALITY TESTS
WITH NO REAL COVERAGE, AND YOU ONLY RELY ON MANUAL TESTING.

Building and deploying apps with confidence is a challenging task.
However, verifying if everything actually works requires a lot of
time and effort – no matter if it is automated or not. Having some-
body who manually verifies that the software works as expected
is vital for your product.

Unfortunately, this process doesn't scale well as the amount of
your app functionalities grow. It also doesn't provide direct feed-
back to the developers who write the code. Because of that, it
increases the time needed to spot and fix a bug.

So what do the developers do to make sure their software is al-
ways production-ready and doesn't rely on human testers? They
write automated tests. And React Native is no exception. You
can write a variety of tests both for your JS code – which con-
tains the business logic and UI – and the native code that is used
underneath.

You can do it by utilizing end-to-end testing frameworks, spinning
up simulators, emulators, or even real devices. One of the great
features of React Native is that it bundles to a native app bundle,
so it allows you to employ all the end-to-end testing frameworks
that you love and use in your native projects.

But beware, writing a test may be a challenging task on its own,
especially if you lack experience. You might end up with a test
that doesn't have a good coverage of your features. Or only to test
positive behavior, without handling exceptions. It's very common

FOCUS TESTING ON KEY PIECES OF
THE APP TO HAVE A BETTER OVERVIEW
OF NEW FEATURES AND TWEAKS.

167

Run tests for key pieces of your app The Ultimate Guide to React Native Optimization

to encounter low-quality tests that don't provide too much value
and hence, won't boost your confidence in shipping the code.

Whichever kind of test you're going to write, be it unit, integration,
or E2E (short for end-to-end), there's a golden rule that will save
you from writing the bad ones. And the rule is to “avoid testing
implementation details.” Stick to it and your test will start to pro-
vide value over time. You can't move as fast as your competition,
chances of regressions are high, and apps can be removed from
stores when receiving bad reviews. The main goal of testing your
code is to deploy it with confidence by minimizing the number of
bugs you introduce in your codebase. And not shipping bugs to
the users is especially important for mobile apps, which are usu-
ally published in app stores.

Because of that, they are a subject of a lengthy review process,
which may take from a few hours up to a few days. And the last
thing you want is to frustrate your users with an update that makes
your app faulty. That could lead to lower ratings and, in extreme
cases, even taking the app down from the store.

Such scenarios may seem pretty rare, but they happen. Then, your
team may become so afraid of having another regression and
crash that it will lose its velocity and confidence.

SOLUTION: DON'T AIM AT 100% COVERAGE, FOCUS ON KEY
PIECES OF THE APP. TEST MOSTLY INTEGRATION.

Running tests is not a question of “if” but “how”. You need to come
up with a plan on how to get the best value for the time spent. It's
very difficult to have 100% lines of your code and dependencies
covered. Also, it's often quite impractical.

Most of the mobile apps out there don't need a full test coverage
of the code they write.

The exceptions are situations in which the client requires full cov-
erage because of the government regulations they must abide by.
But in such cases, you're probably already aware of the problem.

168

Run tests for key pieces of your app The Ultimate Guide to React Native Optimization

It's crucial for you to focus your time on testing the right thing.
Learning to identify business-critical features and capabilities is
usually more important than writing a test itself. After all, you want
to boost confidence in your code, not write a test for the sake of
it. Once you do that, all you need to do is decide on how to run it.
You have quite a few options to choose from.

In React Native, your app consists of multiple layers of code, some
written in JS, some in Java/Kotlin, some in Objective-C/Swift, and
some even in C++, which is gaining adoption in the React Native
core.

Therefore, for practical reasons, we can distinguish between:
•	 JavaScript testing – with the help of the Jest framework. In

the context of React Native, if you think about “unit” or “in-
tegration” tests, this is the category they eventually fall into.
From a practical standpoint, there is no reason for distinguish-
ing between those two groups.

•	 End-to-end app testing – with the help of Detox, Appium, or
another mobile testing framework you're familiar with.

Because most of your business code lives in JS, it makes sense
to focus your efforts there.

Testing pyramid. Source: https://twitter.com/aaronabramov_/status/805913874704674816

https://twitter.com/aaronabramov_/status/805913874704674816

169

Run tests for key pieces of your app The Ultimate Guide to React Native Optimization

Testing trophy. Source: https://twitter.com/kentcdodds/status/960723172591992832

JAVASCRIPT TESTING

Writing tests for utility functions should be pretty straightforward.
To do so, you can use your favorite test runner. The most popular
and recommended one within the React Native community is Jest.
We'll also be referring to it in the following sections.

https://twitter.com/kentcdodds/status/960723172591992832

170

Run tests for key pieces of your app The Ultimate Guide to React Native Optimization

For testing React components, you need more advanced tools
though. Let's take the following component as an example:

It is a React component that displays a list of questions and allows
for answering them. You need to make sure that its logic works by
checking if the callback function is called with the set of answers
provided by the user.

To do so, you can use an official react-test-renderer library
from the React core team. It is a test renderer, in other words, it
allows you to render your component and interact with its lifecycle

import React, { useState } from 'react';
import {
 View,
 Text,
 TouchableOpacity,
 TextInput,
 ScrollView,
} from 'react-native';

const QuestionsBoard = ({ questions, onSubmit }) => {
 const [data, setData] = useState({});

 return (
 <ScrollView>
 {questions.map((q, index) => {
 return (
 <View key={q}>
 <Text>{q}</Text>
 <TextInput
 accessibilityLabel=''answer input''
 onChangeText={(text) => {
 setData((state) => ({
 ...state,
 [index + 1]: { q, a: text },
 }));
 }}
 />
 </View>
);
 })}
 <TouchableOpacity onPress={() => onSubmit(data)}>
 <Text>Submit</Text>
 </TouchableOpacity>
 </ScrollView>
);
};

export default QuestionsBoard;

171

Run tests for key pieces of your app The Ultimate Guide to React Native Optimization

without actually dealing with native APIs. Some people may find it
intimidating and hard to work with because of the low-level API.

That's why the community around React Native came out with
helper libraries, such as React Native Testing Library, providing
us with a good set of helpers to productively write your high-qual-
ity tests.

A great thing about this library is that its API forces you to avoid
testing the implementation details of your components, making it
more resilient to internal refactors.

A test for the QuestionsBoard component would look like this:

Test suite taken from the official RNTL documentation

You first render the QuestionsBoard component with your set of
questions. Next, you query the tree by label text to access an ar-
ray of questions, as displayed by the component. Finally, you set
up the right answers and press the submit button.

import { render, screen, fireEvent } from '@testing-library/
react-native';
import { QuestionsBoard } from '../QuestionsBoard';

test('form submits two answers', () => {
 const allQuestions = ['q1', 'q2'];
 const mockFn = jest.fn();

 render(<QuestionsBoard questions={allQuestions}
onSubmit={mockFn} />);

 const answerInputs = screen.getAllByLabelText('answer
input');

 fireEvent.changeText(answerInputs[0], 'a1');
 fireEvent.changeText(answerInputs[1], 'a2');
 fireEvent.press(screen.getByText('Submit'));

 expect(mockFn).toBeCalledWith({
 1: { q: 'q1', a: 'a1' },
 2: { q: 'q2', a: 'a2' },
 });
});

https://github.com/callstack/react-native-testing-library

172

Run tests for key pieces of your app The Ultimate Guide to React Native Optimization

If everything goes well, your assertion should pass, ensuring
that the verifyQuestions function has been called with the right
set of arguments.

Note: You may have also heard about a technique
called “snapshot testing” for JS. It can help you in
some of the testing scenarios, e.g. when working with
structured data that may change slightly between
tests. The technique is widely adopted in the React
ecosystem because of its built-in support from Jest.

If you're into learning more about snapshot testing, check out
the official documentation on the Jest website. Make sure to read
it thoroughly, as toMatchSnapshot and toMatchInlineSnapshot
are low-level APIs that have many gotchas.

They may help you and your team quickly add coverage to
the project. And at the same time, snapshots make adding
low-quality and hard-to – maintain tests too easy. Using helper
tools like eslint-plugin-jest with its no-large-snapshots option, or
snapshot-diff with its component snapshot comparison feature for
focused assertions, is a must-have for any codebase that lever-
ages this testing technique.

E2E TESTS

The cherry on top of our testing pyramid is a suite of end-to-end
tests. It's good to start with a so-called “smoke test” – a test en-
suring that your app doesn't crash on the first run. It's crucial to
have a test like this, as it will help you avoid sending a faulty app
to your users. Once you're done with the basics, you should use
your E2E testing framework of choice to cover the most important
functionalities of your apps.

These can be, for instance, logging in (successfully or not), logging
out, accepting payments, and displaying lists of data you fetch
from your or third-party servers.

Note: Beware that these tests are usually
a bit harder to set up than the JS ones.

https://jestjs.io/docs/snapshot-testing
https://classic.yarnpkg.com/en/package/eslint-plugin-jest
https://github.com/jest-community/eslint-plugin-jest/blob/main/docs/rules/no-large-snapshots.md
https://classic.yarnpkg.com/en/package/snapshot-diff

173

Run tests for key pieces of your app The Ultimate Guide to React Native Optimization

Also, they are more likely to fail because of the issues related
to e.g. networking, file system operations or storage or memory
shortage. What's more, they provide you with little information
on why they do it. This test's quality (not only the E2E ones) is
called “flakiness” and should be avoided at all cost, as it lowers
your confidence in the test suite. That's why it's so important to
divide testing assertions into smaller groups, so it's easier to de-
bug what went wrong.

For the purpose of this section, we'll be looking at Detox – the most
popular E2E test runner within the React Native community.

Before going any further, you have to install Detox. This process
requires you to take some additional “native steps” before you're
ready to run your first suite. Follow the official documentation as
the steps are likely to change in the future.

Once you have successfully installed and configured Detox,
you're ready to begin with your first test.

This quick snippet shown above would ensure that the first ques-
tion is displayed.

Before that assertion is executed, you should reload the React
Native instance to make sure that no previous state is interfering
with the results.

Note: When you're dealing with multiple elements (e.g. in our
case – a component renders multiple questions), it is a good
practice to assign a suffix testID with the index of the element,
to be able to query the specific one. This, as well as some other
interesting techniques, is in the official Detox recommendation.

it('should display the questions', async () => {
 await devicePixelRatio.reloadReactNative();

 await element(by.text(allQuestions[0])).toBeVisible();
});

https://github.com/wix/Detox
https://wix.github.io/Detox/docs/introduction/project-setup/

174

Run tests for key pieces of your app The Ultimate Guide to React Native Optimization

There are various matchers and expectations that can help you
build your test suite the way you want to.

BENEFITS: YOU HAVE A BETTER OVERVIEW OF THE NEW FEATURES AND
TWEAKS, CAN SHIP WITH CONFIDENCE, AND WHEN THE TESTS ARE
GREEN – YOU SAVE THE TIME OF OTHER PEOPLE (THE QA TEAM).

A high-quality test suite that provides enough coverage for your
core features is an investment in your team's velocity. After all,
you can move only as fast as your confidence allows you to. And
the tests are all about making sure you're heading in the right
direction.

The React Native community is working hard to make testing as
easy and pleasant as possible – for both your team and the QA
teams. Thanks to that, you can spend more time innovating and
pleasing users with flashy new functionalities, and not squashing
bugs and regressions over and over again.

“By testing key features of an app via
integration testing, develop – ers can effectively
identify and eliminate potential bugs, ultimately

leading to a more confident and efficient
development process.”

Christoph Nakazawa – Senior Engineering Manager & Creator of Jest

https://wix.github.io/Detox/docs/api/matchers
https://wix.github.io/Detox/docs/api/expect/

The Ultimate Guide to React Native Optimization

HAVE A WORKING
CONTINUOUS INTEGRATION
(CI) IN PLACE

PART 3 | CHAPTER 2

176

Have a working Continuous Integration (CI) in place The Ultimate Guide to React Native Optimization

ISSUE A LACK OF CI OR HAVING AN UNSTABLE ONE MEANS A LONGER
FEEDBACK LOOP – YOU DON’T KNOW IF YOUR CODE WORKS
AND YOU COOPERATE SLOWLY WITH OTHER DEVELOPERS.

As you have already learned from the previous section, covering
your code with tests can be very helpful for increasing the overall
reliability of your app. However, while testing your product is vital,
it is not the only prerequisite on your way to shipping faster and
with more confidence.

What is equally important is how quickly you detect the potential
regressions and whether finding them is a part of your daily devel-
opment lifecycle. In other words – it all comes down to the feed-
back loop.

For better context, let’s take a look at the early days of the devel-
opment process. When you’re starting out, your focus is on ship-
ping the first iteration (MVP) as fast as possible. Because of that,
you may overlook the importance of the architecture itself. When
you’re done with the changes, you submit them to the repository,
letting other members of your team know that the feature is ready
to be reviewed.

An example of a workflow on Github, where changes are proposed in the form of a PR.

USE A CI PROVIDER TO IMPROVE
THE BUILDING, TESTING, AND
DISTRIBUTION OF YOUR APPS.

177

Have a working Continuous Integration (CI) in place The Ultimate Guide to React Native Optimization

While this technique can be very useful, it is potentially dangerous
on its own, especially as your team grows in size. Before you’re
ready to accept a PR, you should not only examine the code but
also clone it to your environment and test it thoroughly. At the very
end of that process, it may turn out that the proposed changes
introduce a regression that the original author hasn’t spotted.

The regression can occur because we all have different configu-
rations, environments, and ways of working.

IT’S HARDER TO ONBOARD NEW MEMBERS TO YOUR
ORGANIZATION. YOU CAN’T SHIP AND TEST PRS AND
DIFFERENT CONTRIBUTIONS AS THEY HAPPEN.

If you’re testing your changes manually, you’re not only increas-
ing the chances of shipping regressions to production. You’re also
slowing down the overall pace of the development. Thankfully,
with the right set of methodologies and a bit of automation, you
can overcome this challenge once and for all.

This is when Continuous Integration (CI) comes into play. CI is
a development practice where proposed changes are checked-in
to the upstream repository several times a day by the develop-
ment team. Next, they are verified by an automated build, allowing
the team to detect changes early.

The automated builds are performed by a dedicated cloud-based
CI provider that usually integrates from the place where you store
your code. Most of the cloud providers available these days sup-
port GitHub, which is a Microsoft-owned platform for collaborating
on projects that use Git as their version control system.

CI systems pull the changes in real-time and perform a selected
set of tests to give you early feedback on your results. This ap-
proach introduces a single source of truth for testing and allows
developers with different environments to receive convenient and
reliable information.

https://github.com/

178

Have a working Continuous Integration (CI) in place The Ultimate Guide to React Native Optimization

Using a CI service, you not only test your code but also build a new
version of the documentation for your project, build your app, and
distribute it among testers or releases. This technique is called
Continuous Deployment and focuses on the automation of releas-
es. It has been covered in more depth in this section.

SOLUTION: USE A CI PROVIDER SUCH AS CIRCLE CI OR EAS
BUILD TO BUILD YOUR APPLICATION. RUN ALL THE REQUIRED
TESTS AND MAKE PREVIEW RELEASES IF POSSIBLE.

There are many CI providers to choose from, and you can pick
the one best suited for your project needs, or even use a combi-
nation of CI tools. Circle CI and GitHub actions are generic CI pro-
viders with expansive capabilities that also span outside of mobile
app development. Bitrise specializes in services used in Mobile
App Development, and EAS is specialized specifically in building
and deploying React Native projects.

We have selected CircleCI as our reference CI provider for the pur-
pose of this section, as it has wide community adoption. In fact,
there is actually an example project demonstrating the use of CI
with React Native. You can learn more about it here. We will em-
ploy it later in this section to present different CI concepts.

After this overview, we will show you how to alternatively set up
EAS on your React Native project, and use it to build your native
iOS and Android bundles for development, preview and production.

Note: A rule of the thumb is to take advantage of what
React Native or React Native Community projects
already use. Going that route, you can ensure that it
is possible to make your chosen provider work with
React Native and that the most common challenges
have been already solved by the Core Team.

https://www.atlassian.com/continuous-delivery/continuous-deployment
https://circleci.com/
https://github.com/features/actions
https://bitrise.io/
https://expo.dev/eas
https://github.com/gengjiawen/ci-sample

179

Have a working Continuous Integration (CI) in place The Ultimate Guide to React Native Optimization

CircleCI

As with most CI providers, it is extremely important to study their
configuration files before you do anything else.

Let’s take a look at a sample configuration file for CircleCI, taken
from the mentioned React Native example:

Example of .circleci/config.yml

The structure is a standard Yaml syntax for text-based configu-
ration files. You may want to learn about its basics before pro-
ceeding any further.

Note: Many CI services, such as CircleCI or GitHub
Actions, are based on Docker containers and the idea
of composing different jobs into workflows. You may
find many similarities between such services.

These are the three most important building blocks of a CircleCI
configuration: commands , jobs , and workflows .

A command is nothing more than a shell script. It is executed with-
in the specified environment. Also, it is what performs the actu-
al job in the cloud. It can be anything, from a command to install
your dependencies, such as yarn install (if you’re using Yarn)

version: 2.1

jobs:
 android:
 working_directory: ~/CI-CD
 docker:
 - image: reactnativecommunity/react-native-android
 steps:
 - checkout
 - attach_workspace:
 at: ~/CI-CD
 - run: npm i -g envinfo && envinfo
 - run: npm install
 - run: cd android && chmod +x gradlew && ./gradlew
assembleRelease

workflows:
 build_and_test:
 jobs:
 - android

https://circleci.com/docs/2.0/writing-yaml/

180

Have a working Continuous Integration (CI) in place The Ultimate Guide to React Native Optimization

to something more complex like ./gradlew assembleDebug
that builds Android files.

A job is a series of commands – described as steps – that is focused
on achieving a single, defined goal. Jobs can be run in different
environments, by choosing an appropriate Docker container.

For example, you may want to use a Node container if you need
to run only your React unit tests. As a result, the container will
be smaller, have fewer dependencies, and will install faster. If
you want to build a React Native application in the cloud, you
may choose a different container, e.g. with Android NDK/SDK or
the one that uses OS X to build Apple platforms.

Note: To help you choose the container to use when running
React Native tests, the team has prepared a Docker Android
container that includes both Node and Android dependencies
needed to perform the Android build and tests.

In order to execute a job , it has to be assigned to a workflow .
By default, jobs will be executed parallelly within a workflow, but
this can be changed by specifying the requirements for a job .

You can also modify the jobs execution schedule by adding fil-
ters, so, for instance, a deploy job will only run if the changes in
the code refer to the main branch.

You can define many workflows for different purposes, e.g. one
for tests that would run once a PR is opened, and the other to de-
ploy the new version of the app. This is what React Native does
to automatically release its new versions every once in a while.

https://github.com/react-native-community/docker-android

181

Have a working Continuous Integration (CI) in place The Ultimate Guide to React Native Optimization

Expo Application Services (EAS)

EAS is a set of deeply integrated cloud services for Expo and React
Native apps, built and maintained by the team behind Expo. The
three most popular services it includes are:
•	 EAS Build: a cloud service that helps you build React Native

app bundles
•	 EAS Submit: a cloud service that lets you to upload your built

app bundles directly to TestFlight on the Apple App Store, and
your preferred track on the Android Google Play Store

•	 EAS Update: a service to deliver over the air (OTA) updates to
React Native apps

In this section, we will focus on EAS Build. As mentioned above,
EAS is highly specialized in providing the fastest and most seam-
less experience for building React Native apps. To provide the best
developer experience, EAS Build already has the iOS and Android
development environments pre-configured, and it comes with
built-in support for all the more popular package managers in-
cluding npm, yarn, pnpm and bun.

One benefit of using EAS to build your React Native apps, is
that because it’s a cloud service, you can trigger the app builds
from a Mac, Windows or even a Linux machine and download
the build directly to your development device. This means you
could for example develop an iOS app on a Windows machine,
getting around the Apple restrictions of needing to own a Mac in
order to build a native iOS app.

Another benefit of using EAS for building your React Native apps
is that you get build caching for your JavaScript, Android and iOS
dependencies out of the box with no configuration needed.

Setting up EAS Build

To set up EAS Build in an existing React Native app, you’ll first want
to install the EAS cli:

npm i -g eas-cli

https://expo.dev/eas

182

Have a working Continuous Integration (CI) in place The Ultimate Guide to React Native Optimization

You’ll also need to create an Expo account if you didn’t already
have one, and log in on the cli:

To create app builds that run on real devices, you will need to con-
figure build signing: this means generating keystores for Android
and Provisioning Profiles and Certificates for iOS.

One of the perks of using EAS is that it comes with a cli tool
that can automatically create and update all of your build creden-
tials for you. The CLI prompts you to do this when you configure
your first build, or you can also manage the credentials without
triggering a build by running the eas credentials cli command.

After installing the CLI and logging in, run the following in the root
directory of your project:

This will add the eas.json file to the root directory of your project:

{
 ''cli'': {
 ''version'': ''>= 6.0.0''
 },
 ''build'': {
 ''development'': {
 ''developmentClient'': true,
 ''distribution'': ''internal''
 },
 ''preview'': {
 ''distribution'': ''internal''
 },
 ''production'': {}
 },
 ''submit'': {
 ''production'': {}
 }
}

eas login

eas build:configure

https://expo.dev/

183

Have a working Continuous Integration (CI) in place The Ultimate Guide to React Native Optimization

The eas.json file will contain all the configuration needed to
build your app on EAS. By default, it will come with 3 build profiles:
development, preview and production:
•	 development: ''distribution'': ''internal'' in the de-

velopment profile means that the build will be download-
able via a link, and ''developmentClient'': true enables
the dev menu, allowing the JavaScript to be bundled separate-
ly. This is the build you’d want to use for local development.

•	 preview: the preview build will also be downloadable via a link,
but it does not include the dev client. This means that it will
come with one JavaScript bundle and cannot be used for local
development. It is best used to test or preview your production
app before you submit it to the stores.

•	 production: this creates the production apps that you can up-
load to the Google Play and Apple App Stores.

You can always add additional profiles as needed. For example,
you could add a separate build profile for creating an iOS app
that can run on a Simulator:

As seen above, each profile can have additional platform-specific
configurations, though most of the time the configuration will be
shared. See the eas.json reference for all available configuration
options.

''development:simulator'': {
 ''ios'': {
 ''simulator'': true
 },
 ''developmentClient'': true,
 ''distribution'': ''internal''
 }

https://docs.expo.dev/eas/json/

184

Have a working Continuous Integration (CI) in place The Ultimate Guide to React Native Optimization

Running your build on EAS Build

Any build configured in eas.json can be triggered with a sin-
gle command. For example, if you want to build the app for local
development, run:

The CLI will prompt you whether you want to build
the iOS app, Android app or both. The development build
has ''developmentClient'': true , meaning it can be used
for local development. You won’t need to rebuild it again unless
you add any native code or packages. Once you’ve created a build,
you can use Expo Orbit to install and run builds from EAS or local
files on simulators and physical devices.

To use a different build profile, for example the preview build, you
can run the same command with --profile preview :

Once the build is complete, the CLI will print out the URL for
the build, and any member of your team can download the app
to their device.

To automate this workflow, you could configure EAS to build from
GitHub with the Expo GitHub App.

eas build –profile development

eas build –profile preview

https://docs.expo.dev/build/orbit/
https://docs.expo.dev/build/building-from-github/

185

Have a working Continuous Integration (CI) in place The Ultimate Guide to React Native Optimization

While EAS is primarily used for building and submitting your na-
tive apps to the stores, it does also support running E2E tests as
part of your workflow.

BENEFITS: YOU GET EARLY FEEDBACK ON ADDED FEATURES, AND
SWIFTLY SPOT THE REGRESSIONS. ALSO, YOU DON’T WASTE THE TIME
OF OTHER DEVELOPERS ON TESTING THE CHANGES THAT DON’T WORK.

A properly configured and working CI provider can save you a lot
of time when shipping a new version of an application.

GitHub UI reporting the status of CircleCI jobs, an example taken from React Native repository

By spotting errors beforehand, you can reduce the effort needed
to review the PRs and protect your product against regressions
and bugs that may directly decrease your income.

https://docs.expo.dev/build-reference/e2e-tests/

The Ultimate Guide to React Native Optimization

DON’T BE AFRAID TO SHIP
FAST WITH CONTINUOUS
DEPLOYMENT

PART 3 | CHAPTER 3

187

Don’t be afraid to ship fast with Continuous Deployment The Ultimate Guide to React Native Optimization

ISSUE: BUILDING AND DISTRIBUTING YOUR APPS MANUALLY
IS A COMPLEX AND TIME-CONSUMING PROCESS.

As you have learned in the previous section, automation of the crit-
ical pieces of the development lifecycle can help you improve
overall development speed and security. The shorter the feed-
back loop, the faster your team can iterate on the product itself.

However, testing and development are only a part of the activities
that you have to perform when working on a product. Another im-
portant step is the deployment – building and distributing the ap-
plication to production. Most of the time, this process is manual.

The deployment takes time to set up and is far more complex
than just running tests in the cloud. For example, on iOS, Xcode
configures many settings and certificates automatically. This en-
sures a better developer experience for someone who’s work-
ing on a native application. Developers who are used to such
an approach often find it challenging to move the deployment to
the cloud and set up such things as certificates manually.

The biggest downside of the manual approach is that it takes
time and doesn’t scale. In consequence, teams that don’t invest
in the improvements to this process end up releasing their soft-
ware at a slower pace.

ESTABLISH A CONTINUOUS DEPLOYMENT
SETUP TO SHIP NEW FEATURES AND
VERIFY CRITICAL BUGS FASTER.

188

Don’t be afraid to ship fast with Continuous Deployment The Ultimate Guide to React Native Optimization

Continuous Deployment is a strategy in which software is released
frequently through a set of automated scripts. It aims at building,
testing, and releasing software with greater speed and frequency.
The approach helps reduce the cost, time, and risk of delivering
changes by allowing for more incremental updates to applications
in production.

YOU ARE NOT SHIPPING NEW FEATURES AND
FIXES AS QUICKLY AS YOU SHOULD.

Building and distributing your application manually slows down
your development process regardless of how big your team is.
Even in small product teams of around 5 people, automated build
pipelines make everyone’s work easier and reduce unnecessary
communication. This is especially important for remote companies.

Continuous Deployment also allows you to introduce standards
and best practices focused on improving the overall performance
of the application. Some of them have been previously discussed
in this guide. With all the steps required for the deployment in
a single place, you can ensure that all releases are done the same
way and enroll company-wide standards.

SOLUTION: ESTABLISH A CONTINUOUS DEPLOYMENT
SETUP THAT MAKES THE BUILD AND GENERATES
THE CHANGELOG. SHIP TO YOUR USERS INSTANTLY.

When it comes to automating the deployment of mobile applica-
tions, there are a few established ways to go.

One way is to write a set of scripts from scratch by interacting
with xcode and gradle directly. Unfortunately, there are
significant differences between the tooling of Android and iOS
and not many developers have enough experience to handle this

189

Don’t be afraid to ship fast with Continuous Deployment The Ultimate Guide to React Native Optimization

automation. On top of that, iOS is much more complicated than
Android due to advanced code signing and distribution policies.
And as we have said before, if you are doing it manually, even
Xcode cannot help you.

Another way is to use a pre-existing tool in which the develop-
ers have handled the majority of use cases. Our favorite one is
fastlane – a set of modular utilities written in Ruby that let you
build your iOS and Android applications by writing a set of instruc-
tions in a configuration file.

After you have successfully built your binaries, it is time to deploy
them to their destination.

Again, you can either upload the files to the desired service (e.g.
App Store) manually or use a tool that will take care of that for
you. For the same reasons as before, we prefer to use an existing
solution – in this case, AppCenter by Microsoft.

AppCenter is a cloud service with tooling for the automation
and deployment of your application. Its biggest advantage is
that many of the settings can be configured from the graphical
interface. It is much easier to set up the App Store and Play Store
deployments this way, rather than working with uploads from
the command line.

The same can be achieved with EAS by combining EAS Build
to build your app bundles and EAS Submit to automatically up-
load them to your preferred track on the Google Play Store and
TestFlight on App Store Connect.

For the purpose of this section, we will use Fastlane and AppCenter
in CircleCI pipelines to fully automate the process of app delivery
to the final users. Then, we will dive into the EAS Submit.

Note: Describing the ins and outs of the setup would
make this section too long. That’s why we have chosen
to refer only to the specific documentation. Our goal is to
provide you with an overview, and not a step-by-step guide,
since the final config will be different for each project.

https://fastlane.tools/
https://appcenter.ms/
https://expo.dev/eas
https://docs.expo.dev/build/introduction/
https://docs.expo.dev/submit/introduction/

190

Don’t be afraid to ship fast with Continuous Deployment The Ultimate Guide to React Native Optimization

Next, you have to run the init command within the React Native
project. We will run the fastlane command twice from each
native folder. This is because React Native is actually two sepa-
rate apps at a low level.

As a result, this command will generate setup files in both ios
and android folders. The main file in each folder would be
called Fastfile and it’s where all the lanes will be configured.

In the fastlane nomenclature, a lane is just like a work-
flow – a piece that groups low-level operations that deploy your
application.

Low-level operations can be performed by calling actions – pre-
defined fastlane operations that simplify your workflow. We
will show you how they function in the next section.

SETTING UP FASTLANE ON ANDROID

Now that you have successfully set up fastlane in your projects,
you are ready to automate the deployment of our Android appli-
cation. To do so, you can choose an Android specific action – in
this case, gradle . As the name suggests, Gradle is an action
that allows you to achieve similar results as with Android Gradle
used standalone.

Our lane uses the gradle action to first clean the build fold-
er, and then assemble the APK with signature based on passed
params.

cd ./ios && fastlane init

cd ./android && fastlane init

191

Don’t be afraid to ship fast with Continuous Deployment The Ultimate Guide to React Native Optimization

Part of the android/fastlane/Fastfile that defines Android lane, named build

You should be able to run a lane build by implementing:

This should produce a signed Android APK.

Note: Don’t forget to set environment variables
to access keystore. These are RELEASE_STORE_
PASSWORD and RELEASE_KEY_PASSWORD and
have been set in the example presented above.

default_platform(:android)

project_dir = File.expand_path(''..'', Dir.pwd)

platform :android do
 lane :build do |options|
 if (ENV[''ANDROID_KEYSTORE_PASSWORD''] && ENV[''ANDROID_
KEY_PASSWORD''])
 properties = {
 ''RELEASE_STORE_PASSWORD'' => ENV[''ANDROID_KEYSTORE_
PASSWORD'']
 ''RELEASE_KEY_PASSWORD'' => ENV[''ANDROID_KEY_
PASSWORD'']
 }
 end

 gradle(
 task: ''clean'',
 project_dir: project_dir,
 properties: properties,
 print_command: false
)

 gradle(
 task: ''assemble'',
 build_type: ''Release'',
 project_dir: project_dir,
 properties: properties,
 print_command: false
)
 end
end

cd ./android && fastlane build

192

Don’t be afraid to ship fast with Continuous Deployment The Ultimate Guide to React Native Optimization

SETTING UP FASTLANE ON IOS

With the Android build being automated, you’re ready to move to
iOS now. As we discussed earlier, iOS is a bit more complex due
to the certification and provisioning profiles. They were designed
by Apple to increase security. Fortunately, fastlane ships
with a few dedicated actions that help us overcome these
complexities.

You can start with the match action. It helps in managing and dis-
tributing iOS certificates and provisioning profiles among your
team members. You can read about the idea behind match in
the codesigning.

Simply put, match takes care of setting up your device in a way
that it can successfully build an application that will be validated
and accepted by the Apple servers.

Note: Before you move any further, make sure that your
init match for your project. It will generate the required
certificates and store them in a central repository where
your team and other automation tools can fetch them.

Another action that you could use apart from match is gym .
Gym is similar to the Gradle action in a way that it actually per-
forms the build of your application. To do so, it uses the previously
fetched certificates and signs settings from match .

default_platform(:ios)

ios_directory = File.expand_path(''..'', Dir.pwd)
base_path = File.expand_path(''..'', ios_directory)
ios_workspace_path = ''#{ios_directory}/YOUR_WORKSPACE.
xcworkspace''
ios_output_dir = File.expand_path(''./output'', base_path)
ios_app_id = ''com.example''
ios_app_scheme = ''MyScheme''

before_all do
 if is_ci? && FastlaneCore::Helper.mac?
 setup_circle_ci
 end
end

https://codesigning.guide/

193

Don’t be afraid to ship fast with Continuous Deployment The Ultimate Guide to React Native Optimization

Part of ios/fastlane/Fastfile where iOS lane is defined

You should be able to run lane build by running the same com-
mand as for Android:

This should produce an iOS application now too.

DEPLOYING THE BINARIES

Now that you have automated the build, you are able to automate
the last part of the process – the deployment itself. To do so, you
could use App Center, as discussed earlier in this guide.

Note: You have to create an account in the App Center, apps
for Android and iOS in the dashboard and generate access
tokens for each one of them. You will also need a special
Fastlane plugin that brings an appropriate action to your
toolbelt. To do so, run fastlane add_ plugin appcenter.

Once you are done with configuring your projects, you are ready
to proceed with writing the lane that will package the produced
binaries and upload them to the App Center.

platform :ios do
 lane :build do |options|
 match(
 type: options[:type],
 readonly: true,
 app_identifier: ios_app_id,
)

 cocoapods(podfile: ios_directory)

 gym(
 configuration: ''Release'',
 scheme: ios_app_scheme,
 export_method: ''ad-hoc'',
 workspace: ios_workspace_path,
 output_directory: ios_output_dir,
 clean: true,
 xcargs: ''-UseModernBuildSystem=NO''
)
 end
end

cd ./ios && fastlane build

194

Don’t be afraid to ship fast with Continuous Deployment The Ultimate Guide to React Native Optimization

Part of ios/fastlane/Fastfile with upload lane

That’s it! Now it is time to deploy the app by executing deploy lane
from your local machine.

INTEGRATING WITH CIRCLECI

Using all these commands, you are able to build and distribute
the app locally. Now, you can configure your CI server so it does
the same on every commit to main. To do so, you will use CircleCI –
the provider we have been using throughout this guide.

Note: Running Fastlane on CI server usually requires
some additional setup. Refer to official documentation
to better understand the difference between
the settings in local and CI environments.

To deploy an application from CircleCI , you can configure
a dedicated workflow that will focus on building and deploying
the application. It will contain a single job, called deploy_ios ,
that will execute our fastlane command.

lane :deploy do
 build

 appcenter_upload(
 api_token: ENV[''APPCENTER_TOKEN''],
 owner_name: ''ORGANIZATION_OR_USER_NAME'',
 owner_type: ''organization'', # ''user'' |
''organization''
 app_name: ''YOUR_APP_NAME'',
 file: ''#{ios_output_dir}/YOUR_WORKSPACE.ipa'',
 notify_testers: true
)
end

https://docs.fastlane.tools/best-practices/continuous-integration/circle-ci/

195

Don’t be afraid to ship fast with Continuous Deployment The Ultimate Guide to React Native Optimization

Part of CircleCI configuration that executes Fastlane build lane

Pipeline for Android will look quite similar. The main differ-
ence would be the executor. Instead of a macOS one, a docker
react-native-android Docker image should be used.

Note: This is a sample usage within CircleCI. In
your case, it may make more sense to define
filters and dependencies on other jobs, to ensure
the deploy_ios is run at the right point in time.

You can modify or parametrize the presented lanes to use them
for other kinds of deploys, for instance, for the platform-specific
App Store. To learn the details of such advanced use cases, get
familiar with the official Fastlane documentation.

EAS Submit

EAS Submit is a hosted service for uploading and submitting your
app binaries to the app stores. Unlike with CircleCI or AppCenter
you don’t need to go through creating your app signing credentials
and signing your builds manually. The EAS CLI eases you through
this process and can do it automatically when you run eas build .

version: 2.1

jobs:
 deploy_ios:
 macos:
 xcode: 14.2.0
 working_directory: ~/CI-CD
 steps:
 - checkout
 - attach_workspace:
 at: ~/CI-CD
 - run: npm install
 - run: bundle install
 - run: cd ios && bundle exec fastlane deploy

workflows:
 deploy:
 jobs:
 - deploy_ios

https://github.com/react-native-community/docker-android
https://fastlane.tools/
https://docs.expo.dev/submit/introduction/

196

Don’t be afraid to ship fast with Continuous Deployment The Ultimate Guide to React Native Optimization

If needed, you can also manage your signing credentials without
creating a build using eas credentials .

In order to use EAS Submit, you will first need to run eas build
to create the production .ipa for Apple and .aab for Android.
The EAS Build section in the previous chapter explains how to set
this up.

Uploading iOS Apps to App Store Connect with EAS Submit

Once you have your build .ipa either on your local machine or
on EAS, open your terminal and run eas submit . The cli will ask
you to either choose a build from EAS or from your local machine,
you’ll be prompted to log into your Apple Developer account, and
the build will be uploaded to App Store Connect. It usually takes
a couple of minutes for it to finish processing and become avail-
able on App Store Connect.

Alternatively you can build and submit your app in one command
with

Using eas submit to upload your app will not make it immedi-
ately available on the Apple App Store. It is not possible to upload
to the App Store directly. Instead, eas submit will upload your
app to TestFlight from which you can choose to either publish it
to a test group on TestFlight, or create a release and submit it for
App Store review. Only after the app has passed review can it be
made available to users on the App Store.

eas build –auto-submit

197

Don’t be afraid to ship fast with Continuous Deployment The Ultimate Guide to React Native Optimization

Uploading Android Apps to Google Play with EAS Submit

Before you can use eas submit to automatically upload builds
to Google Play, some additional configuration is required.

First you will need to create your Android app on the Google Play
console and upload the first build manually. For this, you can
use eas build to create the build, download it from EAS and
drag and drop the .aab file to the app upload section on Google
Play Console.

During this process, you’ll have to fill in all the metadata about
your app including adding app screenshots, marketing descrip-
tions, terms and conditions and security and privacy declarations.
If you open Dashboard on your Google Play Console, make sure
all the items under ''Finish setting up your app'' are checked off.
Then open ''Publishing Overview'' and ensure all changes have
been submitted for approval and approved.

Once that’s done, you’ll need to set up a Google Service account
by following this guide. After completing the guide, you should
have downloaded the JSON private key for your Google Service
account (this is a private key so it should be stored securely
and not committed to .git). Add a path to the JSON file un-
der serviceAccountPath in your eas.json :

{
 ''submit'': {
 ''production'': {
 ''android'': {
 ''serviceAccountPath'': ''../path/to/api-xyz.json'',
 ''track'':''internal''
 }
 }
 }
}

https://github.com/expo/fyi/blob/main/first-android-submission.md
https://github.com/expo/fyi/blob/main/creating-google-service-account.md

198

Don’t be afraid to ship fast with Continuous Deployment The Ultimate Guide to React Native Optimization

Now you’re all set up to do an automatic submission! For the next
build you want to upload, you can run eas submit to submit
it automatically, or run eas build –auto-submit to build and
submit it in one go.

Google Play builds are uploaded to specific test tracks with ''in-
ternal'' being the lowest. You can upload to a different test track
or manually promote the release up from Google Play as it passes
each stage of testing.

BENEFITS: A SHORT FEEDBACK LOOP ALONG WITH
NIGHTLY OR WEEKLY BUILDS LETS YOU VERIFY FEATURES
FASTER AND SHIP CRITICAL BUGS MORE OFTEN.

With automated deployment, you no longer waste your time on
manual builds and sending the artifacts to test devices or app
stores. Your stakeholders are able to verify features faster and
shorten the feedback loop even further. With regular builds, you
will be able to catch or ship fixes to any critical bugs with ease.

The Ultimate Guide to React Native Optimization

SHIP OTA (OVER-THE-AIR)
WHEN IN AN EMERGENCY

PART 3 | CHAPTER 4

200

Ship OTA (Over-The-Air) when in an emergency The Ultimate Guide to React Native Optimization

ISSUE: TRADITIONAL WAYS OF UPDATING APPS ARE TOO
SLOW AND YOU LOSE YOUR PRECIOUS TIME ON THEM.

The traditional model of sending updates on mobile is funda-
mentally different from the one we know from writing JavaScript
applications for other platforms. Unlike the web, mobile de-
ployment is much more complex and comes with better se-
curity out-of-the-box. We have talked about that in detail in
the previous section focused on the CI/CD.

What does it mean for your business?

Every update, no matter how quickly shipped by your developers,
is usually going to wait some time while the App Store and Play
Store teams review your product against their policies and best
practices.

This process is particularly challenging in all Apple platforms,
where apps are often taken down or rejected, because of not
following certain policies or meeting the required standard for
the user interface. Thankfully, the risk of your app being reject-
ed with React Native is reduced to a minimum, as you're working
on the JavaScript part of the application. The React Native Core
Team ensures that all the changes done to the framework have no
impact on the success of your application's submission.

As a result, the submission process takes a while. And if you're
about to ship a critical update, every minute counts.

Fortunately, with React Native, it is possible to dynamically ship
your JavaScript changes directly to your users, skipping the App
Store review process. This technique is often referred to as
an over-the-air update. It lets you change the appearance of your

SUBMIT CRITICAL UPDATES AND
FIXES INSTANTLY THROUGH OTA.

201

Ship OTA (Over-The-Air) when in an emergency The Ultimate Guide to React Native Optimization

application immediately, for all the users, following the technique
that you have selected.

WHEN CRITICAL BUGS HAPPEN – MINUTES AND HOURS CAN BE
CRITICAL. DON'T WAIT TO FIX YOUR END USERS' EXPERIENCE.

If your application is not OTA-ready, you risk it being left with
a critical bug on many devices, for as long as Apple/Google re-
views your product and allows it to be distributed.

Even though the review times have gotten much better over
the years, it is still a good escape hatch to be able to immediate-
ly recover from an error that slipped through the testing pipeline
and into production.

SOLUTION: IMPLEMENT OTA UPDATES WITH APP
CENTER/ CODEPUSH OR EAS UPDATE

As mentioned earlier, React Native is OTA-ready. It means that its
architecture and design choices make such updates possible.
However, it doesn't ship with the infrastructure to perform such
operations. To do so, you will need to integrate a 3rd-party ser-
vice that carries its own infrastructure for doing so.

These are the popular ways to implement OTA into your app:
•	 CodePush: A service that is part of Microsoft's App Center

suite.
•	 EAS Update: A service that is created by Expo and is part of

EAS suite.

APP CENTER/CODEPUSH

Configuring the native side

To integrate CodePush into your application, please follow the re-
quired steps for iOS and Android, respectively. We decided to link
to the official guides instead of including the steps here as they
include additional native code to apply and that is very likely to
change in the coming months.

https://learn.microsoft.com/en-us/appcenter/distribution/codepush/
https://appcenter.ms/
https://docs.expo.dev/eas-update/introduction/
https://expo.dev/eas
https://learn.microsoft.com/en-us/appcenter/distribution/codepush/rn-get-started
https://learn.microsoft.com/en-us/appcenter/distribution/codepush/rn-get-started#android-setup

202

Ship OTA (Over-The-Air) when in an emergency The Ultimate Guide to React Native Optimization

CONFIGURING THE JAVASCRIPT SIDE

Once you set up the service on the native side, you can use
the JavaScript API to enable the updates and define when they
should happen. One of the ways that enable fetching updates on
the app startup is to use the codePush wrapper and wrap your
main component.

Basic CodePush integration

That's it! If you have performed all the changes on the native side,
your application is now OTA-ready.

For more advanced use cases, you can also change the default
settings on when to check for updates and when to download
and apply them. For example, you can force CodePush to check
for updates every time the app is brought back to the foreground
and install updates on the next resume.

The following diagram code snippet demonstrates such a solution:

Custom CodePush setup

import React from 'react';
import { View } from 'react-native';
import codePush from 'react-native-code-push';

const MyApp = () => <View />;

export default codePush(MyApp);

import React from 'react';
import { View } from 'react-native';
import codePush from 'react-native-code-push';

const MyApp = () => <View />;

export default codePush({
 updateDialog: true,
 checkFrequency: codePush.CheckFrequency.ON_APP_RESUME,
 installMode: codePush.InstallMode.ON_NEXT_RESUME,
})(MyApp);

203

Ship OTA (Over-The-Air) when in an emergency The Ultimate Guide to React Native Optimization

SHIPPING UPDATES TO THE APPLICATION

After configuring CodePush on both JavaScript and the native side
of React Native, it is time to launch the update and let your new
customers enjoy it. To do so, we can do this from the command
line, by using the App Center CLI:

And then, a release command to bundle React Native assets and
files and send them to the cloud:

Once these steps are complete, all users running your app will re-
ceive the update using the experience you configured in the pre-
vious section.

Note: Before publishing a new CodePush release, you will
have to create an application in the App Center dashboard.

That will give you the ownerName and appName that you're look-
ing for. As said before, you can either do this via UI by visiting App
Center, or by using the App Center CLI.

EAS Update

EAS Update is an EAS service for delivering Over the Air Updates.
It provides first-class support for instant updates in React Native
applications and is especially user-friendly if you're already using
Expo.

It serves updates from the edge with a global CDN and uses mod-
ern networking protocols like HTTP/3 for clients that support them.
Furthermore, it implements the Expo Updates protocol, which is
an open standard specification for instant updates.

npm install -g appcenter-cli

appcenter login

appcenter codepush release-react -a <ownerName>/<appName>

https://learn.microsoft.com/en-us/appcenter/distribution/codepush/
https://learn.microsoft.com/en-us/appcenter/distribution/codepush/
https://docs.expo.dev/eas-update/introduction/
https://docs.expo.dev/technical-specs/expo-updates-1/

204

Ship OTA (Over-The-Air) when in an emergency The Ultimate Guide to React Native Optimization

As with other Expo products, EAS Update provides a superior
Developer Experience, making it a preferred choice for many de-
velopers. It also enhances developer workflows with features like:
•	 Automated Publishing: Integrate with GitHub Actions for au-

tomated update publishing.
•	 Incremental Rollouts: Roll out updates gradually to a selected

percentage of users.
•	 Rollbacks: Ability to rollback any previously published update.
•	 Asset Selection: Choose which assets to include in an update.
•	 Custom Update Strategies: Utilize the useUpdates() hook to

create tailored update strategies.

Using EAS Update

​​To use EAS Update in your project, you'll need to install the eas-cli
package and log in to your Expo account using eas login .

Note: To get EAS Update working in your project with the bare
React Native workflow, you need to also set up Expo in
your project. See the guide to make that work correctly.

Setting up EAS Update

Start by installing expo-updates library in your project:

Next, initialize your project with EAS Update:

Then, set up the configuration file for builds:

After running these commands, eas.json is created at the root
of your project. Inside it, you will notice that there are two dif-
ferent build profiles (preview and production), each with

npx expo install expo-updates

eas update:configure

eas build:configure

https://docs.expo.dev/eas-update/github-actions/
https://docs.expo.dev/eas-update/rollouts/
https://docs.expo.dev/eas-update/rollbacks/
https://docs.expo.dev/eas-update/asset-selection/
https://docs.expo.dev/versions/latest/sdk/updates/#useupdates
https://docs.expo.dev/bare/installing-expo-modules/

205

Ship OTA (Over-The-Air) when in an emergency The Ultimate Guide to React Native Optimization

a channel property. A channel allows us to point updates at
builds for a profile.

Creating a build

Create a build of your app using EAS Build or another tool of your
choice. The new build will include the expo-updates native
module, which will be responsible for downloading and launching
your updates.

You can set up an internal distribution build using the preview
build profile and after the build completes, install it on your de-
vice or an emulator or simulator. See Internal distribution for more
information.

Creating an update

After installing the new build on your device, you're ready to send
an update to it! Make a small, visible change to the JS of the app.
You can also confirm this change by running the development
server with npx expo start locally on our machine.

After you've confirmed our changes, let's run the command to
create and publish an update with EAS Update:

This command creates an update. You can view this in our EAS
project's dashboard:

eas update --branch preview --message “Fixed a bug.”

https://docs.expo.dev/build/internal-distribution/#setting-up-internal-distribution

206

Ship OTA (Over-The-Air) when in an emergency The Ultimate Guide to React Native Optimization

Each update contains details about the branch that is linked to
the build profile, the commit, and information about platform-spe-
cific (Android and iOS) details. See the conceptual overview of
how EAS Update works for more information.

Running an update

After this step is completed, all users running our app will receive
an update with the changes. By default, expo-updates checks
for the updates in the background when the app launches. When
testing with an internal distribution, to see the update in the app
you'll need to force close and reopen the app up to two times to
see the changes.

You can expand on the default functionality and implement your
own strategy using the useUpdates() hook from expo-updates ,
which allows you to:

•	 Fetch information on available updates
•	 Fetch information available on currently running updates
•	 Check for changes manually using

Updates.checkForUpdateAsync()
•	 Download and run updates using

Updates.fetchUpdateAsync()

EAS Update can be extremely useful for deploying changes to pro-
duction and is equally beneficial during the development phase. It
offers a convenient and rapid method for sharing your work with
team members.

BENEFITS: SHIP CRITICAL FIXES AND SOME
CONTENT INSTANTLY TO THE USERS.

With OTA updates integrated into your application, you can send
your JavaScript updates to all your users in a matter of minutes.
This possibility may be crucial for fixing significant bugs or send-
ing instant patches.

For example, it may happen that your backend will stop working
and it causes a crash at startup. It may be a mishandled error – you

https://docs.expo.dev/eas-update/how-it-works/
https://docs.expo.dev/eas-update/how-it-works/
https://docs.expo.dev/versions/latest/sdk/updates/#useupdates

207

Ship OTA (Over-The-Air) when in an emergency The Ultimate Guide to React Native Optimization

never had a backend failure during the development and forgot
to handle such edge cases.

You can fix the problem by displaying a fallback message and in-
forming users about the problem. While the development will take
you around one hour, the actual update and review process can
take hours if not days. With OTA updates set up, you can react to
this in minutes without risking the bad UX that will affect the ma-
jority of users.

The Ultimate Guide to React Native Optimization

MAKE YOUR APP
CONSISTENTLY FAST

PART 3 | CHAPTER 5

209

Make your app consistently fast The Ultimate Guide to React Native Optimization

ISSUE: EVERY ONCE IN A WHILE AFTER FIXING
A PERFORMANCE ISSUE, THE APP GETS SLOW AGAIN.

Customers have very little patience for slow apps. There is so
much competition on the market that customers can quickly
switch to another app. According to the Unbounce report, nearly
70% of consumers admit that page speed influences their willing-
ness to buy. Good examples here are Walmart and Amazon – both
of these companies noticed an increase in revenue by up to 1%
for every 100 milliseconds of load time improvement. The perfor-
mance of websites and mobile apps can thus noticeably impact
businesses' performance.

It's becoming increasingly important to not only fix performance
issues but also make sure they don't happen again. You want your
React Native app to perform well and fast at all times.

SOLUTION: USE THE DMAIC METHODOLOGY TO HELP YOU
SOLVE PERFORMANCE ISSUES CONSISTENTLY.

From the technical perspective, we should begin by avoiding any
guesswork and base all decisions on data. Poor assumptions lead
to false results. We should also remember that improving perfor-
mance is a process, so it's impossible to fix everything at once.
Small steps can provide big results.

This all leads us to the fact that developing an app is a process.
There are some interactions that lead to results. And, what is most
important, the processes can be optimized.

USE THE DMAIC PROCESS TO
HELP YOU PREVENT REGRESSING
ON APP PERFORMANCE

https://unbounce.com/page-speed-report/

210

Make your app consistently fast The Ultimate Guide to React Native Optimization

One of the most effective ways of doing that is using the DMAIC
methodology. It's very data-driven and well-structured and can
be used to improve React Native apps. The acronym stands for
Define, Measure, Analyze, Improve, and Control. Let's see how we
can apply each phase in our apps.

Define

In this phase, we should focus on defining the problem, what we
want to achieve, opportunities for improvement, etc. It's import-
ant to listen to the customer's voice in this phase – their expecta-
tions and feedback. It helps to better understand the needs and
preferences and what problems they are facing. Next, it is very
important to measure it somehow. Let's say the customer wants
a fast checkout. After analyzing the components, we know that to
achieve this we need a swift checkout process, a short wait time,
and smooth animations and transitions. All of these points can
be decomposed into CTQ (Critical-to-Quality) that are measur-
able and can be tracked. For example, a short wait time can be
decomposed into a quick server response and a low number of
server errors.

Another handy tool is analyzing common user paths. With good
tracking, we can analyze and understand what parts of the app
are mostly used by the users.

In this phase, it's very important to choose priorities. It should end
up with defining the order in which we will optimize things. Any
tools and techniques for prioritizing will definitely help here.

Ultimately, we need to define where we want to go – we should
define our goals and what exactly we want to achieve. Keep in
mind that it all should be measurable! It's a good practice to put
these goals in the project scope.

Measure

Since we already know where we want to go, it's time to assess
the starting point. It's all about collecting as much data as possi-
ble to get the actual picture of the problem. We need to ensure
the measurement process is precise. It's really helpful to create

211

Make your app consistently fast The Ultimate Guide to React Native Optimization

a data collection plan and engage the development team to build
the metrics. After that, it's time to do some profiling.

When profiling in React Native, the main question is whether to do
this on JavaScript or the native side. It heavily depends on the ar-
chitecture of the app, but most of the time it's a mix of both.

One of the most popular tools is React Profiler, which allows us to
wrap a component to measure the render time and the number of
renders. It's very helpful because many performance issues come
from unnecessary rerenders. Discover how to use it here:

Using React Profiler API

It will output the data:

Output of the React Profiler API

The second tool is a library created by Shopify – react-native-per-
formance. It allows you to place some markers in the code and
measure the execution time. There is also a pretty nice Flipper
plugin that helps to visualize the output:

import React, { Profiler } from 'react';
import { View } from 'react-native';

const Component = () => (
 <Profiler id=''Component'' onRender={(...args) => console.
log(args)}>
 <View />
 </Profiler>
);

export default Component;

{
 id: ''Component'',
 phase: ''mount'',
 actualDuration: 1.3352311453,
 baseDuration: 0.95232323318,
 ...
}

https://shopify.github.io/react-native-performance/
https://shopify.github.io/react-native-performance/

212

Make your app consistently fast The Ultimate Guide to React Native Optimization

https://shopify.github.io/react-native-performance/docs/guides/flipper-react-native-performance

Speaking of Flipper, it has some more plugins that help us to mea-
sure the app performance and speed up the development process.
We can use, e.g. React Native Performance Monitor Plugin for
a Lighthouse-like experience or React Native Performance Lists
Profiler Plugin.

On the native side, the most common method is using Native
IDEs – Xcode and Android Studio. There are plenty of useful in-
sights which can be analyzed and lead to some conclusions and
results.

The most important aspect of this phase is measurement variation.
Due to different environments, we have to be very careful when
profiling. Even if the app is run on the same device, there might

https://shopify.github.io/react-native-performance/docs/guides/flipper-react-native-performance
https://github.com/bamlab/react-native-flipper-performance-monitor
https://shopify.github.io/react-native-performance/docs/guides/react-native-performance-lists-profiler
https://shopify.github.io/react-native-performance/docs/guides/react-native-performance-lists-profiler

213

Make your app consistently fast The Ultimate Guide to React Native Optimization

be some external factors that affect performance measurements.
That's why we should base all the measurements on release builds.

Analyze

The goal of this phase is to find the root cause of our problem. It's
a good idea to start with a list of things that could potentially cause
the problem. A little brainstorming with a team is really helpful here.

One of the most popular tools to define a problem is called
a cause and effect diagram. It looks like a fish and we should draw
it from right to left. We start from the head and it should contain
the problem statement – at this stage, we should already have
it based on the Define phase. Then, we identify all the potential
major causes of the problem and assign them to the fish bones.
After that, we assign all the potential causes to each major cause.
There are many things that could have an impact on performance.
The list could get really long, so it's important to narrow it down.
Outline the most important factors and focus on them.

Finally, it's time to test the hypothesis. For example, if the main
problem is low FPS, and the potential major cause is related to
list rendering, we can think of some improvements in the area of
images in the list items. We need to design a test that will help us
accept or reject the hypothesis – it will probably be some kind of
proof of concept. Next, we interpret the results and decide if it
was improved or not. Then we make a final decision.

Cause and effect diagram example

214

Make your app consistently fast The Ultimate Guide to React Native Optimization

Improve

Now we know what our goal is and how we want to achieve it, it's
time to make some improvements. This is the phase where opti-
mization techniques start to make sense.

Before starting, it's a good idea to have the next brainstorming
session and identify potential solutions. Depending on the root
cause, there might be a lot of them. Based on the last example
with images on the list item, we can think about implementing
proper image caching and reducing unnecessary renders.

After outlining the solutions, it's time to pick the best one.
Sometimes the solution that gives the best effects might be ex-
tremely costly, e.g. when it's necessary to make some architec-
tural changes.

It's then time to implement the solution. After that, it's required to
properly test it and we are done!

Control

The last step is the control phase. We need to make sure that ev-
erything works well now. The performance will degrade if it is not
under control. People tend to blame devices, the used technology,
or even users when it comes to bad performance. So what do we
need to do to keep our performance on a high level?

We need to make sure that we have a control plan. We can use some
of our work from the previous phases to make it. We should point
out focal points, some measurement characteristics, acceptable
ranges for indicators, and testing frequency. Additionally, it is
a good practice to write down some procedures and what to do
if we spot issues.

The most important aspect of the control phase is monitoring
regressions. Until recently it was quite difficult to do that in
React Native, but now we have plenty of options to improve our
monitoring.

215

Make your app consistently fast The Ultimate Guide to React Native Optimization

Real-time user monitoring

One way to keep the performance improvements we intro-
duce in our apps is through real-time monitoring tools. Such as
Firebase Performance Monitoring, which is a service that gives us
some insights into performance issues in production. Or Sentry
Performance Monitoring, which tracks application performance,
collects metrics like throughput and latency, and displays the im-
pact of errors across multiple services.

It's a great addition to any app builders that want to have in-
sights on how the performance is distributed across all the devic-
es that install their apps. Based on real user data.

TESTING REGRESSIONS AS A PART OF THE DEVELOPMENT PROCESS

Another way to keep performance regressions under control is
through automated testing. Profiling, measuring, and running
on various devices is quite manual and time-consuming. That's
why developers avoid doing it. However, it gets too easy to un-
intentionally introduce performance regressions that would only
get caught during QA, or worse, by your users. Thankfully, we
have a way to write automated performance regression tests in
JavaScript for React and React Native.

Reassure allows you to automate React Native app performance
regression testing on CI or a local machine. In the same way
you write your integration and unit tests that automatically ver-
ify that your app is still working correctly, you can write per-
formance tests that verify that your app is still working perfor-
mantly. You can think about it as a React performance testing
library. In fact, Reassure is designed to reuse as much of your
React Native Testing Library tests and setup as possible. As it's
designed by its maintainers and creators.

It works by measuring certain characteristics – render duration
and render count – of the testing scenario you provide and com-
paring that to the stable version measured beforehand. It repeats
the scenario multiple times to reduce the impact of random vari-
ations in render times caused by the runtime environment. Then
it applies a statistical analysis to figure out whether the code

https://firebase.google.com/docs/perf-mon
https://docs.sentry.io/product/performance/
https://docs.sentry.io/product/performance/
https://www.callstack.com/open-source/reassure
https://github.com/callstack/react-native-testing-library

216

Make your app consistently fast The Ultimate Guide to React Native Optimization

changes are statistically significant or not. As a result, it generates
a human-readable report summarizing the results and displays it
on CI or as a comment to your pull request.

The simplest test you can write would look something like this:

Code: Component.perf-test.tsx

This test will measure the render times of Component during
mounting and the resulting sync effects. Let's take a look at
a more complex example though. Here we have a component
that has a counter and a slow list component:

import React from 'react';
import { View } from 'react-native';
import { measurePerformance } from 'reassure';

const Component = () => {
 return <View />;
};

test('mounts Component', async () => {
 await measurePerformance(<Component />);
});

import React from 'react';
import { Pressable, Text, View } from 'react-native';
import { SlowList } from './SlowList';

const AsyncComponent = () => {
 const [count, setCount] = React.useState(0);

 const handlePress = () => {
 setTimeout(() => setCount((c) => c + 1), 10);
 };

 return (
 <View>
 <Pressable accessibilityRole=''button''
onPress={handlePress}>
 <Text>Action</Text>
 </Pressable>

 <Text>Count: {count}</Text>

 <SlowList count={200} />
 </View>
);
};

217

Make your app consistently fast The Ultimate Guide to React Native Optimization

And the performance test looks as follows:

When run through its CLI, Reassure will generate a perfor-
mance comparison report. It's important to note that to get a diff
of measurements, we need to run it twice. The first time with
a --baseline flag, which collects the measurements under
the .reassure/ directory .

After running this command, we can start optimizing our code and
see how it affects the performance of our component. Normally, we
would keep the baseline measurement and wait for performance

import React from 'react';
import { screen, fireEvent } from '@testing-library/react-
native';
import { measurePerformance } from 'reassure';
import { AsyncComponent } from '../AsyncComponent';

test('AsyncComponent', async () => {
 const scenario = async () => {
 const button = screen.getByText('Action');

 fireEvent.press(button);
 await screen.findByText('Count: 1');

 fireEvent.press(button);
 await screen.findByText('Count: 2');

 fireEvent.press(button);
 fireEvent.press(button);
 fireEvent.press(button);
 await screen.findByText('Count: 5');
 };

 await measurePerformance(<AsyncComponent />, { scenario });
});

218

Make your app consistently fast The Ultimate Guide to React Native Optimization

regressions to be caught and reported by Reassure. In this case,
we'll skip that step and jump straight into optimizing, because
we just noticed a nice possibility to do so. And since we have
our baseline measurement for reference, we can actually verify
our assumptions and whether the improvement was real or only
subjective.

The possibility we noticed is that the <SlowList/> component
can be memoized, as it doesn't depend on any external variables.
We can leverage useMemo for that case:

Once we're done, we can run Reassure a second time. Now with-
out the --baseline flag .

Performance comparison report from Reassure

Now that Reassure has two test runs to compare – the current and
the baseline – it can prepare a performance comparison report. As
you can notice, thanks to applying memoization to the SlowList
component rendered by AsyncComponent , the render duration
went from 78.4 ms to 26.3 ms, which is roughly a 66% perfor-
mance improvement.

Test results are assigned to certain categories:
•	 Significant Changes To Render Duration shows a test sce-

nario where the change is statistically significant and should
be looked into as it marks a potential performance loss/
improvement.

const slowList = useMemo(() => <SlowList count={200} />, []);

219

Make your app consistently fast The Ultimate Guide to React Native Optimization

•	 Meaningless Changes To Render Duration shows test sce-
narios where the change is not statistically significant.

•	 Changes To Render Count shows test scenarios where the ren-
der count did change.

•	 Added Scenarios shows test scenarios that do not exist in
the baseline measurements.

•	 Removed Scenarios shows test scenarios that do not exist in
the current measurements.

When connected with Danger JS, Reassure can output this report
in the form of a GitHub comment, which helps catch the regres-
sions during code review.

Report generated by Reassure with Danger JS

You can discover more use cases and examples in the docs.

BENEFITS: A WELL-STRUCTURED AND
ORGANIZED OPTIMIZATION PROCESS.

When working on an app, regardless of its size, it's important to
have a clear path for reaching our goals. The main benefit of using
DMAIC when optimizing React Native applications is a structured
and direct approach. Without it, it may be difficult to verify what
works (and why). Sometimes our experience and intuition are just
enough. But that's not always the case.

https://danger.systems/js/
https://callstack.github.io/reassure/docs/api/

220

Make your app consistently fast The Ultimate Guide to React Native Optimization

Having a process like this allows us to focus on problem-solving
and constantly increase productivity. Thanks to the DMAIC ap-
proach, performance optimization becomes a part of your normal
development workflow. Making your app closer to

being performant by default. Spotting the performance issues
even before they hit your users.

No software is flawless. Bugs and performance issues will hap-
pen even if you're the most experienced developer on the team.
But we can take action to mitigate those risks by using automated
tools like Sentry, Firebase, or Reassure. Use them in your project
and enjoy the additional confidence they bring to your projects.
And the improved UX they bring to your users in turn.

“Performance regression monitoring is
a critical process in the development and

maintenance of mobile apps. Without it, small
issues can go unnoticed and lead to significant

performance degradation, negatively impacting
the user experience and potentially decreasing

user retention. Regular performance regression
monitoring allows developers to proactively

identify and fix issues before they become
a problem for users, ensuring the app runs at
optimal performance and providing a better

experience for all users.”

Michał Chudziak – Independent Consultant @michalchudziak.dev

The Ultimate Guide to React Native Optimization

KNOW HOW TO PROFILE IOS

PART 3 | CHAPTER 6

222

Know how to profile iOS The Ultimate Guide to React Native Optimization

ISSUE: IT TAKES TOO MUCH TIME TO SEE THE RESULT OF AN ACTION.

Profiling is essential to understanding the runtime performance
of the app, through analysis that measures the memory or time
complexity, frequency, and duration of function calls, etc. Getting
all this information helps you to track down and provide proper
solutions to keep your app healthy and your users engaged.

Xcode provides some basic tools to do the first report. You can
monitor the CPU, Memory, and Network.

CPU Monitor measures the amount of work done. Memory Monitor
is for observing the use of the app. All iOS devices use SSD for
permanent storage, accessing this data is slower compared to
RAM. Disk Monitor is for understanding your app’s disk-writing
performance. Network Monitor analyzes your iOS app’s TCP/IP
and UDP/IP connections.

You can tap on each of them to find more information.

It also provides an extra monitor that isn’t shown by default but
can help you inspect your UI – it’s the View Hierarchy.

IMPROVE YOUR APP WITH
REAL-TIME METRICS

223

Know how to profile iOS The Ultimate Guide to React Native Optimization

When the app is running and you are on the screen you want to
inspect, click on Debug View Hierarchy.

This will show your current UI in a 2D/3D model and the view tree.

This will help you to detect overlappings (you can’t see a compo-
nent) or if you want to flatten your component tree. Even though
RN does a view flattening it sometimes can’t do it with all of them,
so here we can do some optimization focusing on specific items.

Let’s say we have a TODO list app, and when the Add button is
pressed, it adds the new item to the list. However, it takes a cou-
ple of seconds to show up on the list because there is some logic

https://reactnative.dev/architecture/view-flattening

224

Know how to profile iOS The Ultimate Guide to React Native Optimization

before the item is added. Let’s go to our dev toolbox and pick up
our first instrument so we can confirm and measure the delay.

IOS INSTRUMENTS

Instruments is a debugging and profiling tool that comes pre-
packaged with xCode, and is literally a box of tools, each of them
serving a different purpose. You choose from a list of templates,
and you choose any of them depending on your goal: improving
performance or battery life or fixing a memory problem.

We are going to use Time Profiler. Let’s dive into it. With xCode
open, we go to Open Developer Tool – > Instruments. Then, scroll
down to find the Time Profiler tool.

It will open a new window. To start profiling your app, click on
the dropdown menu and select your device and the app.

When the app opens, start using it normally, or in this case, add
a new TODO item.

https://developer.apple.com/videos/play/wwdc2019/411/

225

Know how to profile iOS The Ultimate Guide to React Native Optimization

After playing around and adding the new TODO item, we can see
there is a big blue rectangle, which means there is something
that is taking a lot of time to finish. Let’s take a look at the threads.

You can expand by pressing option+click over the chevron,
which will expand to display useful information. At least for now it
is showing the memory address, but we will need to find another
way to find where the problem is.

SOLUTION: COMBINING WITH A TOOL SPECIFIC
FOR JS CONTEXT TRACKING.

Let’s use Flipper, the same one that we used in Pay Attention to UI
re-renders, but we are going to use another monitor called Hermes
Debugger (RN). With the app open and running, we go to Flipper,
select the running app if not selected already, and go to Hermes
Debugger (RN) – > Profiler

226

Know how to profile iOS The Ultimate Guide to React Native Optimization

We click Start so the profiler begins. We do the same flow and ac-
tions as before when profiling with Time Profiler. When we Stop,
we will see all the data collected.

By default the data will be sorted bottom-up with the heavy tasks
at the top. We can see that a function called doFib is taking ~14
sec to complete, it is a good start, let’s go into that function and
see what we can do. The fixes will vary depending on your code.

After applying a possible fix, we first check Time Profiler again.
We click on the record button and start using the app, in our case
let’s add a new TODO item.

227

Know how to profile iOS The Ultimate Guide to React Native Optimization

As we can see, the fix we applied did work, we aren’t seeing
the big blue rectangle like before. This is a good sign. Let’s con-
tinue with our profiling path to check how it looks in Flipper.

Start profiling the app one more time using Hermes Debugger
(RN) – > Profiler.

We don’t see the doFib function anymore, only other expected
RN tasks.

Introduction to Prewarming in iOS 15

Prewarming, introduced in iOS 15, impacts the user experience
by minimizing the delay before an app becomes operational. This
process launches inactive application processes ahead of time,
enabling the system to construct and cache vital low-level struc-
tures for a swift full launch. It transforms traditional notions of
startup time measurement, as it may activate processes well be-
fore the user actually opens the app. For instance, if a user ha-
bitually starts an app every day at 8 am, iOS might preemptively
initiate certain processes around 7:50 am to align with the user’s
anticipated behavior.

Early Stages of App Launch

Prior to the execution of the app’s main function and +appli-
cationDidFinishLaunching , iOS undertakes considerable pre-
paratory work. This involves initializing dynamic libraries (dylibs),
executing +load methods, and more, a process that could extend
beyond a second. Grasping this procedure is essential for devel-
opers focused on optimizing their app’s launch efficiency.

Prewarming Mechanics

During prewarming, the app’s launch sequence remains suspend-
ed either until a complete app launch is initiated or when the sys-
tem, needing to free up resources, removes the prewarmed app

228

Know how to profile iOS The Ultimate Guide to React Native Optimization

from memory. Such prewarming can be triggered following a de-
vice reboot or intermittently, depending on the system’s status.

Special Handling for iOS 15’s Prewarming

With the advent of iOS 15, initializers and other preparatory steps
can be executed hours ahead of the actual app startup. Developers
must, therefore, account for the interval between the commence-
ment of the process in the pre-main initializer and the subsequent
post-main period. Otherwise, they may notice a lot of very high
numbers in their monitoring tools.

Distinguishing Prewarming in Objective-C and Swift

Developers can utilize the ProcessInfo environment variable
to ascertain whether prewarming has occurred. This helps tai-
lor the app’s behavior based on the prewarming status. Following
snippets enable developers to detect if the app was launched
through prewarming and adjust their startup measurements
accordingly.

Code snippet: example in Objective-C

Code snippet: example in Swift

if ([[[NSProcessInfo processInfo] environment]
[@''ActivePrewarm''] isEqual:@''1'']) {
 // Handle prewarmed app launch scenario
} else {
 // Handle regular app launch scenario
}

if ProcessInfo.processInfo.environment[''ActivePrewarm''] ==
''1'' {
 // Handle prewarmed app launch scenario
} else {
 // Handle regular app launch scenario
}

229

Know how to profile iOS The Ultimate Guide to React Native Optimization

BENEFITS: HAVING A FASTER AND MORE RESPONSIVE APP.

70% of the users will leave the app if the response to a given ac-
tion takes too long. Profiling our apps has become one of the main
steps in our development life cycle. Using specific tools like Time
Profiler will help us understand if our app is responding fast or
where we could find areas of improvement. Remember, users are
becoming more sensitive to speed and delays, even a 0.1 sec of
improvement can increase a conversion rate by 10.1%.

https://techjury.net/blog/app-usage-statistics/#gref
https://www2.deloitte.com/content/dam/Deloitte/ie/Documents/Consulting/Milliseconds_Make_Millions_report.pdf

The Ultimate Guide to React Native Optimization

KNOW HOW TO
PROFILE ANDROID

PART 3 | CHAPTER 7

231

Know how to profile Android The Ultimate Guide to React Native Optimization

ISSUE: YOU ENCOUNTER A PERFORMANCE ISSUE
THAT COMES DIRECTLY FROM ANDROID RUNTIME.

In the event of any performance issues, we mostly use React
Profiler to troubleshoot and resolve our problems. Since most of
the performance problems originate from the JS realm, we don’t
usually need to do anything beyond that. But sometimes we’ll
encounter a bug or performance issue that comes directly from
the Android runtime. In such a case, we’ll need a fine tool to help
us gather the following metrics from the device:
•	 CPU
•	 memory
•	 network
•	 battery usage

Based on that data, we can check whether our app consumes
more energy than usual or in some cases, uses more CPU power
than it should. It is useful especially to check the executed code
on lower-end (LE) Android devices. Some algorithms can run fast-
er on some devices and the end user will not spot any glitches,
but we have to remember, some customers can use LE devices
and the algorithm or function can be too heavy for their phones.
High-end devices will handle it because their hardware is powerful.

SOLUTION: PROFILE YOUR APP WITH ANDROID
PROFILER IN ANDROID STUDIO

Android Profiler in Android Studio

Android Studio is the IDE developed by JetBrains. It is officially
supported by Google and the official IDE, which can be used to
develop any Android app. It is very powerful and contains lots of
functionalities in one place. One of those tools is Android Profiler.

GET REAL-TIME METRICS TO BETTER
YOUR APP UNDERSTANDING

232

Know how to profile Android The Ultimate Guide to React Native Optimization

If you have not installed Android Studio yet, you can install it us-
ing this link.

To open the Profiler, choose View > Tool Windows > Profiler from
the Android Studio menu bar:

Or click Profile in the toolbar.

Before you start profiling the app, please remember:
•	 Run the app on a real Android device that is affected, prefer-

ably a lower-end phone or emulator if you don’t have one. If
your app has runtime monitoring set up, use a model that is
either the most used by users or the one that’s affected by
a particular issue.

https://developer.android.com/studio

233

Know how to profile Android The Ultimate Guide to React Native Optimization

•	 Turn off development mode. You must be sure that the app
uses a JS bundle instead of the metro server, which provides
that bundle. To turn it off, please share your device, click on
Settings and find JS Dev Mode:

After that, go to the Profiler tab and add a new profiler session:

Wait for the session to attach to your app and start performing
actions that could cause some performance issues, like swiping,
scrolling, navigating, etc. Once you’re done, you should see some
metrics like these:

Each greenfield React Native app has only one Android Activity. If
your app has more than one, it’s most likely a brownfield one. Read
more about the brownfield approach here. In the above example,

234

Know how to profile Android The Ultimate Guide to React Native Optimization

we don’t see anything interesting. Everything works fine without
any glitches. Let’s check each metric:
•	 The CPU metric is strictly correlated to energy consumption

because the CPU needs more energy to do some computations.
•	 The memory metric is not changing while using the app, which is

expected. Memory usage can grow, e.g. when opening new
screens, and drop when the garbage collector (GC) releases
free memory,

•	 e.g. when navigating out of a screen. When memory increases
unexpectedly and keeps on growing, it may indicate a memory
leak, which we want to avoid, as it can crash the app with out
of memory (OOM) errors.

•	 The network section has been moved to a separate tool called
the Network Tab. In most cases, this metric is not needed, be-
cause it is mostly related to the backend infrastructure. If you
would like to profile a network connection, you can find more
information here.

•	 The energy section gives hints on when our app’s energy us-
age is low, medium, or high, impacting the daily experience of
using the app.

https://developer.android.com/studio/debug/network-profiler
https://developer.android.com/studio/debug/network-profiler

235

Know how to profile Android The Ultimate Guide to React Native Optimization

USE ANDROID PROFILER IN ACTION

In the previous example, we could see some relations between
each metric:

To see a more detailed view, we have to double-click on the tab.
Now we can see more details. When the user started to do some
touch action (swiping in the above example), we could see more
CPU work. Each app will have its own signature of CPU spikes
and lows. It’s important to build an intuition about it, by interact-
ing with it and pairing certain activities, like touch events, with
the increased usage. In other words, some spikes are expected,
because the work needs to be done. The problem starts when
CPU usage is very high for extended periods of time or in unex-
pected places.

Let’s imagine you would like to pick the best list or scroll view com-
ponent for your React Native app, which has the best performance
on a lower-end device. You noticed the current solutions could be

236

Know how to profile Android The Ultimate Guide to React Native Optimization

revamped or improved and you started working on this. In your
experiment, you would like to check how your solution works for
LE devices using the above-described solution. When you dou-
ble-clicked on CPU, you could spot the below data:

Here you can see the mqt_js thread is used almost all the time
and does some heavy computation because your computations
are done on the JS side. You can start thinking about how to im-
prove it. There are multiple options to check:
•	 Replace the bridge with JSI in terms of communication – do

tests if JSI is faster than the bridge.
•	 Move some part of the code to the native side – on the native

side you have more control over threads execution and can
schedule some work to not block the JS or UI thread.

•	 Use a different native component – replace the native scroll
view with your custom solution.

•	 Use shadow nodes – do some expensive calculation with C++
and pass it to the native side.

You can try out all of those solutions and compare the effect be-
tween each other. The profiler will provide you with a metric and
based on that you can make a decision about which approach fits
best to your particular problem.

There’s more info about the Android Profiler here.

SYSTEM TRACING

Using the Android Studio CPU Profiler, we can also make a sys-
tem tracing. We can check when the appropriate function has
been called. We can triage all threads and see which function is
the costliest which affects the UX. To enable system tracing, click
on the CPU section and select System Trace Recording

https://github.com/facebook/react-native/blob/8bd3edec88148d0ab1f225d2119435681fbbba33/ReactAndroid/src/main/java/com/facebook/react/bridge/queue/MessageQueueThreadImpl.java#L210
https://developer.android.com/studio/profile/android-profiler?gclsrc=ds&gclsrc=ds

237

Know how to profile Android The Ultimate Guide to React Native Optimization

After some interaction, you should be able to see all the threads
with details:

238

Know how to profile Android The Ultimate Guide to React Native Optimization

You can also save your data by clicking the Save Button:

And use the data in a different tool, e.g. Perfetto:

You’ll also want to check the official Android Profiling guide by
the React Native core team. They use different tools, but the out-
come will be the same. The guide provides case studies and how
to spot an issue on different threads:
•	 UI thread
•	 JS thread
•	 Native module thread
•	 Render Thread (only Android)

You can find more about threading models in the New Architecture
chapter.

FLIPPER PERFORMANCE PLUGIN FOR ANDROID

We already know Flipper can be quite handy in hunting perfor-
mance issues. One of the most interesting plugins to help us out
on Android is android-performance-profiler. It can be used as
a standalone tool or on a CI. It can generate beautiful reports, so
this tool can be used to make some sophisticated experiments.

https://ui.perfetto.dev/
https://reactnative.dev/docs/profiling#profiling-android-ui-performance-with-systrace
https://github.com/bamlab/android-performance-profiler

239

Know how to profile Android The Ultimate Guide to React Native Optimization

Here is a picture of an example experiment:

Comparison of the new vs old architecture of React Native by Almouro. Source.

You can also automate your experiments with e2e tests and gen-
erate reports locally or on a CI. Those reports can be used to com-
pare solutions with each other.

BENEFITS: REAL-TIME METRICS WILL IMPROVE
YOUR APP UNDERSTANDING

As stated above, users will abandon your app if the response time
is too long. Using specific tools will help you understand the root
cause of the app’s performance issue.

https://github.com/Almouro/fabric-test

The Ultimate Guide to React Native Optimization

IF YOU HAVE MORE QUESTIONS OR NEED HELP WITH CROSS-
PLATFORM OR REACT NATIVE DEVELOPMENT, WE WILL
BE HAPPY TO PROVIDE A FREE CONSULTATION.

JUST CONTACT US!

THANK YOU
We hope that you found the aforementioned best practices for
React Native optimization useful and that they will make your
work easier. We did our best to make this guide comprehensive
and describe both the technical and business aspects of the opti-
mization process.

If you enjoyed it, don’t hesitate to share it with your friends
who also use React Native in their projects.

https://www.callstack.com/contact-us?utm_campaign=RN_Performance&utm_source=guide&utm_content=guide_contact_1

241

Thank you The Ultimate Guide to React Native Optimization

AUTHORS
 MICHAŁ PIERZCHAŁA

As Head of Technology at Callstack, he is passionate about build-
ing mobile and web experiences, high-quality JS tooling, and Open
Source. Core Jest and React Native community contributor. Space
exploration enthusiast.

twitter.com/thymikee
github.com/thymikee

 JAKUB BUJKO

With multiple years of delving deep into react.js development
in his pocket, Kuba went on to master mobile development.
Passionate about edge technologies, clean and minimalistic code,
and charting the paths for the future of React and React Native
development.

twitter.com/f3ng	 liu
github.com/Xiltyn

 MACIEJ JASTRZĘBSKI

React & React Native developer with multiple years of experience
building native iOS and Android apps. Passionate about building
robust and delightful apps along with writing well-architected and
readable code. Loves learning new things. He likes to travel in his
free time, hike in the mountains, and take photographs.

twitter.com/mdj_dev
github.com/mdjastrzebski

https://twitter.com/thymikee
https://github.com/thymikee
https://twitter.com/f3ng__liu
https://github.com/Xiltyn
https://twitter.com/mdj_dev
https://github.com/mdjastrzebski

242

Thank you The Ultimate Guide to React Native Optimization

 PIOTR TROCKI

Software developer who started his journey from mobile apps.
Now Piotr is focused on mastering both Native (Android, iOS) and
React Native technologies in brownfield applications. When not
coding, he spends his free time on the dance floor.

twitter.com/Tr0zZe
github.com/troZee

 JAKUB BINDA

A dedicated software developer who pays a lot of attention to
the details in every task he does. Always committed and eager
to learn, Kuba likes to create things and dive into how they work.
A father of two and a husband to the woman of his life. Those two
roles motivate him the most and give him the strength to move
mountains.

github.com/jbinda

 SZYMON RYBCZAK

Szymon is a 17-year-old React Native Developer with three years
of experience and currently doing mobile app development at
Callstack. In his free time, he likes to discover new and interest-
ing technologies.

github.com/szymonrybczak
twitter.com/SzymonRybczak

https://twitter.com/Tr0zZe
https://github.com/troZee
https://github.com/jbinda
https://github.com/szymonrybczak
https://twitter.com/SzymonRybczak

243

Thank you The Ultimate Guide to React Native Optimization

 HUR ALI

TypeScript enthusiast mastering the React-Native and Native realm.
He feels best in diving deep with mobile tech, making proof-of-
concept projects, and experimenting with new technologies. In his
free time, he enjoys playing FIFA and contribution to OSS.

twitter.com/hurali97
github.com/hurali97

 OSKAR KWAŚNIEWSKI

React Native Developer at Callstack. Currently, he’s strengthen-
ing his knowledge of native development and making some OSS
contributions. During his free time, he enjoys riding a bike, going
to the gym, and playing video games.

github.com/okwasniewski
twitter.com/o_kwasniewski

 TOMASZ MISIUKIEWICZ

React Native Developer at Callstack with a strong background in
web development. Big fan of keeping the code clean and simple.
Loves to learn new stuff and enhance his programming skillset
every day.

github.com/TMisiukiewicz

 EDUARDO GRACIANO

Senior mobile developer at Callstack. Hacking almost all kinds of
mobile tech and always looking forward to making readable and
maintainable code without messing up everything.

github.com/gedu
twitter.com/teddydroid07

https://twitter.com/hurali97
https://github.com/hurali97
https://github.com/okwasniewski
https://twitter.com/o_kwasniewski
https://github.com/TMisiukiewicz
https://github.com/gedu
https://twitter.com/teddydroid07

244

Thank you The Ultimate Guide to React Native Optimization

 ANDREW ANDILEVKO

React Native developer with a background in Android develop-
ment. He likes complex tasks to constantly expand his expertise
and knowledge. He spends his free time with his wife and pug.

github.com/andrewworld

 JAMES IDE

I work on Expo, which I co-founded with Charlie Cheever when we
wanted to make it easier to make and use universal mobile apps
that run everywhere.

https://github.com/ide
https://twitter.com/JI

 GRZEGORZ KRUK

Senior Frontend Developer with years of experience in building
mobile and web solutions in multiple frameworks and libraries.
After mastering web development, he’s become passionate about
building beautiful and neat mobile solutions in React Native.

https://github.com/grzegorzkruk

 KANSTANTSIN KIYKO

JavaScript expert with experience in mobile and web apps devel-
opment. Has a can-do attitude, loves to solve complex problems
and automate things.

https://twitter.com/xfozzyx
https://github.com/sneakyechidna

https://github.com/andrewworld
https://github.com/ide
https://twitter.com/JI
https://github.com/grzegorzkruk
https://twitter.com/xfozzyx
https://github.com/sneakyechidna

245

Thank you The Ultimate Guide to React Native Optimization

 JACEK PACIOREK

React Native Developer at Callstack with full stack development
background. Loves to explore boundaries between software and
hardware and tinkering with IoT devices. Likes a good challenge
and gets stuff done. Besides that, he is obsessed with cars – loves
driving them, fixing them up and sharing his passion with others.
Also tries to stay active by skiing and sailing

https://github.com/booua

 CATALIN MIRRON

I like to give life to UIs through animation and I am doing so for more
than a decade now. I am the creator of AnimateReactNative.com,
the most comprehensive collection of React Native Animations.

https://twitter.com/mironcatalin
https://github.com/catalinmiron

https://github.com/booua
https://twitter.com/mironcatalin
https://github.com/catalinmiron

The Ultimate Guide to React Native Optimization

ABOUT CALLSTACK
Callstack is the Total Software Engineering consultancy that de-
velops high-performing cross-platform apps set in the React
Universe. We work with global enterprise clients such as PwC,
Major League Soccer and AutoZone, and fast-growing startups
and SMEs like Evernote and Coinmine.

We build apps in the React Universe: an approach that leverages
React-based full-stack, cross-platform tech stack to create bet-
ter, faster apps, smoother running teams, and lower operational
costs.

Ever since the company’s beginning, we’ve been an active part
of the community the co-creators of React Native. We make free
Open Source tools and libraries that help millions of develop-
ers globally build better-performing apps quicker and easier.
Projects like Reassure, Re.Pack or React Native Testing Library
were born from the belief that (code) sharing is caring and
proved invaluable in improving developer and user experience
alike.

We also help raise industry standards by training developers
around the world through business and technology podcasts,
articles, and events like React Universe Conf (formerly React
Native EU) and React Conf.

	How This Guide Is Organized
	Introduction to React Native Optimization
	It’s all about TTI and FPS?
	PART 1

	Pay attention to UI re-renders
	Use dedicated components for certain layouts
	Think twice before you pick an external library
	Always remember to use libraries dedicated to the mobile platform
	Find the balance between native and JavaScript
	Animate at 60FPS – no matter what
	Replace Lottie with Rive
	Draw efficiently on a canvas with skia
	Optimize your app’s JavaScript bundle
	PART 2

	Always run the latest React Native version to access the new features
	How to debug faster and better with Flipper
	Avoid unused native dependencies
	Optimize your application startup time with Hermes
	Optimize your Android application’s size with these Gradle settings
	Experiment with the New Architecture of React Native
	PART 3

	Run tests for key pieces of your app
	Have a working Continuous Integration (CI) in place
	Don’t be afraid to ship fast with Continuous Deployment
	Ship OTA (Over-The-Air) when in an emergency
	Make your app consistently fast
	Know how to profile iOS
	Know how to profile Android
	Thank you
	About Callstack

